IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12121-d924545.html
   My bibliography  Save this article

Experimental Study on Ecological Performance Improvement of Sprayed Planting Concrete Based on the Addition of Polymer Composite Material

Author

Listed:
  • Haoqiang Lai

    (School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
    Guangdong Engineering Research Center for Major Infrastructures Safety, Guangzhou 510275, China)

  • Jiaxin Du

    (School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
    Guangdong Engineering Research Center for Major Infrastructures Safety, Guangzhou 510275, China)

  • Cuiying Zhou

    (School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
    Guangdong Engineering Research Center for Major Infrastructures Safety, Guangzhou 510275, China)

  • Zhen Liu

    (School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
    Guangdong Engineering Research Center for Major Infrastructures Safety, Guangzhou 510275, China)

Abstract

Sprayed planting concrete (SPC) can be used for the ecological restoration of rocky steep slopes. It is a kind of outside-soil material with excellent soil and slope stabilization performance, and plants can grow in SPC, thus achieving harmony between engineering stability and ecological restoration and improving the landscape and ecosystem. The addition of cement is the key to allowing SPC to achieve slope stabilization and prevent soil erosion. However, the addition of cement can cause SPC to have high alkalinity, overheating (cement generates hydration heat), and excessive hardening, which are not conducive to the growth of plants and can lead to poor ecological performance of SPC for slope ecological restoration. We studied the improvement of the ecological performance of SPC by using a polymer composite material composed of a polymer adhesive material and a polymer water-retaining material. This paper studied the improvement effects of the polymer composite material on the ecological performance of SPC used in slope ecological restoration through a laboratory erosion resistance test and a plant growth test. The results showed that SPC with the addition of polymer composite material can reduce its cement content by about 50% while still retaining excellent erosion resistance performance when it is used in slope ecological restoration. Additionally, the plant germination rates and plant heights when using the SPC improved by polymer composite material were increased by 190% and 110%, respectively. These results show that polymer composite material can significantly improve the ecological performance of SPC and effectively improve its slope ecological restoration effects. This study provides theoretical and technical support for the application of SPC in ecological restoration on rocky steep slopes.

Suggested Citation

  • Haoqiang Lai & Jiaxin Du & Cuiying Zhou & Zhen Liu, 2022. "Experimental Study on Ecological Performance Improvement of Sprayed Planting Concrete Based on the Addition of Polymer Composite Material," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12121-:d:924545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tae Hyoung Kim & Sung Ho Tae, 2016. "Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment)," IJERPH, MDPI, vol. 13(11), pages 1-16, November.
    2. Hao Gou & Jin Liao & Fan Du & Changliang Tang & Yali Lin & Dingjuan Li & Yulei Zhang & Yangyang Ning & Zihui Ye & Zheyao Xu & Cuiying Zhou & Zhen Liu, 2022. "Soil Remediation of Subtropical Garden Grasses and Shrubs Using High-Performance Ester Materials," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    3. Wei Huang & Cuiying Zhou & Zhen Liu, 2022. "Model Test Study on the Enhancement of Ecological Self-Repairing Ability of Surface Slope Soil by New Polymer Composites," IJERPH, MDPI, vol. 19(16), pages 1-17, August.
    4. Cuiying Zhou & Xingxing Ge & Wei Huang & Dexian Li & Zhen Liu, 2019. "Effects of Aqua-Dispersing Nano-Binder on Clay Conductivity at Different Temperatures," Sustainability, MDPI, vol. 11(18), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Chen & Jiusu Li, 2023. "Effects of Different Silicon Sources on the Properties of Geopolymer Planting Concrete Mixed with Red Mud," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    2. Yongsheng Yao & Peiyi Xu & Jue Li & Hengwu Hu & Qun Qi, 2024. "Advancements and Applications of Life Cycle Assessment in Slope Treatment: A Comprehensive Review," Sustainability, MDPI, vol. 16(1), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Liao & Zhen Liu & Cuiying Zhou & Qingxiu Zhang, 2022. "Disintegration Resistance of Steep-Rocky-Slope Wall-Hanging Soil Based on High-Performance Ester Materials," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    2. ZhiWu Zhou & Julián Alcalá & Víctor Yepes, 2020. "Environmental, Economic and Social Impact Assessment: Study of Bridges in China’s Five Major Economic Regions," IJERPH, MDPI, vol. 18(1), pages 1-33, December.
    3. Hao Gou & Jin Liao & Fan Du & Changliang Tang & Yali Lin & Dingjuan Li & Yulei Zhang & Yangyang Ning & Zihui Ye & Zheyao Xu & Cuiying Zhou & Zhen Liu, 2022. "Soil Remediation of Subtropical Garden Grasses and Shrubs Using High-Performance Ester Materials," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    4. Zhen Liu & Hao Sun & Ke Lin & Cuiying Zhou & Wei Huang, 2021. "Occurrence Regularity of Silt–Clay Minerals in Wind Eroded Deserts of Northwest China," Sustainability, MDPI, vol. 13(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12121-:d:924545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.