IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p10282-d891616.html
   My bibliography  Save this article

Assessment of Two-Vehicle and Multi-Vehicle Freeway Rear-End Crashes in China: Accommodating Spatiotemporal Shifts

Author

Listed:
  • Chenzhu Wang

    (School of Transportation, Southeast University, 2 Sipailou, Nanjing 210096, China)

  • Yangyang Xia

    (School of Transportation, Tibet University, Lhasa 850001, China)

  • Fei Chen

    (School of Transportation, Southeast University, 2 Sipailou, Nanjing 210096, China)

  • Jianchuan Cheng

    (School of Transportation, Southeast University, 2 Sipailou, Nanjing 210096, China)

  • Zeng’an Wang

    (Jiangsu Expressway Company Limited, Nanjing 210049, China)

Abstract

Accounting for the growing numbers of injuries, fatalities, and property damage, rear-end crashes are an urgent and serious topic nowadays. The vehicle number involved in one crash significantly affected the injury severity outcomes of rear-end crashes. To examine the transferability and heterogeneity across crash types (two-vehicle versus multi-vehicle) and spatiotemporal stability of determinants affecting the injury severity of freeway rear-end crashes, this study modeled the data of crashes on the Beijing-Shanghai Freeway and Changchun-Shenzhen Freeway across 2014–2019. Accommodating the heterogeneity in the means and variances, the random parameters logit model was proposed to estimate three potential crash injury severity outcomes (no injury, minor injury, and severe injury) and identify the determinants in terms of the driver, vehicle, roadway, environment, temporal, spatial, traffic, and crash characteristics. The likelihood ratio tests revealed that the effects of factors differed significantly depending on crash type, time, and freeway. Significant variations were observed in the marginal effects of determinants between two-vehicle and multi-vehicle freeway rear-end crashes. Then, spatiotemporal instability was reported in several determinants, including trucks early morning. In addition, the heterogeneity in means and variances of the random parameters revealing the interactions of random parameters and other insignificant variables suggested the higher risk of determinants including speeding indicators, early morning, evening time, and rainy weather conditions. The current finding accounting for spatiotemporal instability could help freeway designers, decision-makers, management strategies to understand the contributing mechanisms of the factors to develop effective management strategies and measurements.

Suggested Citation

  • Chenzhu Wang & Yangyang Xia & Fei Chen & Jianchuan Cheng & Zeng’an Wang, 2022. "Assessment of Two-Vehicle and Multi-Vehicle Freeway Rear-End Crashes in China: Accommodating Spatiotemporal Shifts," IJERPH, MDPI, vol. 19(16), pages 1-30, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10282-:d:891616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/10282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/10282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Czajkowski, Mikołaj & Zagórska, Katarzyna & Letki, Natalia & Tryjanowski, Piotr & Wąs, Adam, 2021. "Drivers of farmers’ willingness to adopt extensive farming practices in a globally important bird area," Land Use Policy, Elsevier, vol. 107(C).
    2. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    3. Pereira, Pedro & Ribeiro, Tiago, 2011. "The impact on broadband access to the Internet of the dual ownership of telephone and cable networks," International Journal of Industrial Organization, Elsevier, vol. 29(2), pages 283-293, March.
    4. Mogens Fosgerau & André de Palma, 2016. "Generalized entropy models," Working Papers hal-01291347, HAL.
    5. Doherty, Edel & Campbell, Danny, 2011. "Demand for improved food safety and quality: a cross-regional comparison," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108791, Agricultural Economics Society.
    6. Abdurrahman B. Aydemir & Erkan Duman, 2021. "Migrant Networks and Destination Choice: Evidence from Moves across Turkish Provinces," Koç University-TUSIAD Economic Research Forum Working Papers 2109, Koc University-TUSIAD Economic Research Forum.
    7. Allais, Olivier & Etilé, Fabrice & Lecocq, Sébastien, 2015. "Mandatory labels, taxes and market forces: An empirical evaluation of fat policies," Journal of Health Economics, Elsevier, vol. 43(C), pages 27-44.
    8. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    9. Kesternich, Iris & Heiss, Florian & McFadden, Daniel & Winter, Joachim, 2013. "Suit the action to the word, the word to the action: Hypothetical choices and real decisions in Medicare Part D," Journal of Health Economics, Elsevier, vol. 32(6), pages 1313-1324.
    10. Khan, Md. Tajuddin & Kishore, Avinash & Joshi, Pramod Kumar, 2016. "Gender dimensions on farmers’ preferences for direct-seeded rice with drum seeder in India:," IFPRI discussion papers 1550, International Food Policy Research Institute (IFPRI).
    11. Bargain, Olivier & Orsini, Kristian, 2006. "In-work policies in Europe: Killing two birds with one stone?," Labour Economics, Elsevier, vol. 13(6), pages 667-697, December.
    12. Scaccia, Luisa & Marcucci, Edoardo & Gatta, Valerio, 2023. "Prediction and confidence intervals of willingness-to-pay for mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 54-78.
    13. Arlan Brucal & Michael Roberts, 2015. "Can Energy Efficiency Standards Reduce Prices and Improve Quality? Evidence from the US Clothes Washer Market," Working Papers 2015-5, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    14. Wong, Maisy, 2010. "The Relationship between Marginal Willingness-to-Pay in the Hedonic and Discrete Choice Models," MPRA Paper 51218, University Library of Munich, Germany.
    15. Wong, S.C. & Wong, C.W. & Sze, N.N., 2008. "Attitudes of public light bus drivers to penalties to combat red light violations in Hong Kong," Transport Policy, Elsevier, vol. 15(1), pages 43-54, January.
    16. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.
    17. Meredith Fowlie, 2010. "Emissions Trading, Electricity Restructuring, and Investment in Pollution Abatement," American Economic Review, American Economic Association, vol. 100(3), pages 837-869, June.
    18. Cho, Woohyun & Windle, Robert J. & Dresner, Martin E., 2017. "The impact of operational exposure and value-of-time on customer choice: Evidence from the airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 455-471.
    19. Carlos Madeira, 2019. "Adverse selection, loan access and default in the Chilean consumer debt market," Working Papers Central Bank of Chile 838, Central Bank of Chile.
    20. Laura Márquez-Ramos & Inmaculada Martínez-Zarzoso & Celestino Suárez-Burguet, 2011. "Determinants of Deep Integration: Examining Socio-political Factors," Open Economies Review, Springer, vol. 22(3), pages 479-500, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10282-:d:891616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.