IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i14p8408-d859280.html
   My bibliography  Save this article

Pan-Genome Analysis of Oral Bacterial Pathogens to Predict a Potential Novel Multi-Epitopes Vaccine Candidate

Author

Listed:
  • Tehniyat Rida

    (Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan)

  • Sajjad Ahmad

    (Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan)

  • Asad Ullah

    (Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan)

  • Saba Ismail

    (Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan)

  • Muhammad Tahir ul Qamar

    (Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan)

  • Zobia Afsheen

    (Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan)

  • Muhammad Khurram

    (Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan)

  • Muhammad Saqib Ishaq

    (Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan)

  • Ali G. Alkhathami

    (Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia)

  • Eid A. Alatawi

    (Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia)

  • Faris Alrumaihi

    (Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia)

  • Khaled S. Allemailem

    (Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia)

Abstract

Porphyromonas gingivalis is a Gram-negative anaerobic bacterium, mainly present in the oral cavity and causes periodontal infections. Currently, no licensed vaccine is available against P. gingivalis and other oral bacterial pathogens. To develop a vaccine against P. gingivalis , herein, we applied a bacterial pan-genome analysis (BPGA) on the bacterial genomes that retrieved a total number of 4908 core proteins, which were further utilized for the identification of good vaccine candidates. After several vaccine candidacy analyses, three proteins, namely lytic transglycosylase domain-containing protein, FKBP-type peptidyl-propyl cis-trans isomerase and superoxide dismutase, were shortlisted for epitopes prediction. In the epitopes prediction phase, different types of B and T-cell epitopes were predicted and only those with an antigenic, immunogenic, non-allergenic, and non-toxic profile were selected. Moreover, all the predicted epitopes were joined with each other to make a multi-epitopes vaccine construct, which was linked further to the cholera toxin B-subunit to enhance the antigenicity of the vaccine. For downward analysis, a three dimensional structure of the designed vaccine was modeled. The modeled structure was checked for binding potency with major histocompatibility complex I (MHC-I), major histocompatibility complex II (MHC-II), and Toll-like receptor 4 (TLR-4) immune cell receptors which revealed that the designed vaccine performed proper binding with respect to immune cell receptors. Additionally, the binding efficacy of the vaccine was validated through a molecular dynamic simulation that interpreted strong intermolecular vaccine–receptor binding and confirmed the exposed situation of vaccine epitopes to the host immune system. In conclusion, the study suggested that the model vaccine construct has the potency to generate protective host immune responses and that it might be a good vaccine candidate for experimental in vivo and in vitro studies.

Suggested Citation

  • Tehniyat Rida & Sajjad Ahmad & Asad Ullah & Saba Ismail & Muhammad Tahir ul Qamar & Zobia Afsheen & Muhammad Khurram & Muhammad Saqib Ishaq & Ali G. Alkhathami & Eid A. Alatawi & Faris Alrumaihi & Kha, 2022. "Pan-Genome Analysis of Oral Bacterial Pathogens to Predict a Potential Novel Multi-Epitopes Vaccine Candidate," IJERPH, MDPI, vol. 19(14), pages 1-23, July.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:14:p:8408-:d:859280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/14/8408/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/14/8408/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicolas Rapin & Ole Lund & Massimo Bernaschi & Filippo Castiglione, 2010. "Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asad Ullah & Sajjad Ahmad & Saba Ismail & Zobia Afsheen & Muhammad Khurram & Muhammad Tahir ul Qamar & Naif AlSuhaymi & Mahdi H. Alsugoor & Khaled S. Allemailem, 2021. "Towards A Novel Multi-Epitopes Chimeric Vaccine for Simulating Strong Immune Responses and Protection against Morganella morganii," IJERPH, MDPI, vol. 18(20), pages 1-26, October.
    2. Miraj ud-din & Aqel Albutti & Asad Ullah & Saba Ismail & Sajjad Ahmad & Anam Naz & Muhammad Khurram & Mahboob ul Haq & Zobia Afsheen & Youness El Bakri & Muhammad Salman & Bilal Shaker & Muhammad Tahi, 2022. "Vaccinomics to Design a Multi-Epitopes Vaccine for Acinetobacter baumannii," IJERPH, MDPI, vol. 19(9), pages 1-26, May.
    3. Muhammad Idrees & Muhammad Yasir Noorani & Kalim Ullah Altaf & Eid A. Alatawi & Faris F. Aba Alkhayl & Khaled S. Allemailem & Ahmad Almatroudi & Murad Ali Khan & Muhammad Hamayun & Taimoor Khan & Syed, 2021. "Core-Proteomics-Based Annotation of Antigenic Targets and Reverse-Vaccinology-Assisted Design of Ensemble Immunogen against the Emerging Nosocomial Infection-Causing Bacterium Elizabethkingia meningos," IJERPH, MDPI, vol. 19(1), pages 1-18, December.
    4. Saba Ismail & Noorah Alsowayeh & Hyder Wajid Abbasi & Aqel Albutti & Muhammad Tahir ul Qamar & Sajjad Ahmad & Rabail Zehra Raza & Khulah Sadia & Sumra Wajid Abbasi, 2022. "Pan-Genome-Assisted Computational Design of a Multi-Epitopes-Based Vaccine Candidate against Helicobacter cinaedi," IJERPH, MDPI, vol. 19(18), pages 1-19, September.
    5. Nicola Barbarini & Alessandra Tiengo & Riccardo Bellazzi, 2011. "Prediction of Peptide Reactivity with Human IVIg through a Knowledge-Based Approach," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-12, August.
    6. Hassan N. Althurwi & Khalid M. Alharthy & Faisal F. Albaqami & Ali Altharawi & Muhammad Rizwan Javed & Ziyad Tariq Muhseen & Muhammad Tahir ul Qamar, 2022. "mRNA-Based Vaccine Designing against Epstein-Barr Virus to Induce an Immune Response Using Immunoinformatic and Molecular Modelling Approaches," IJERPH, MDPI, vol. 19(20), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:14:p:8408-:d:859280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.