IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i10p5800-d812211.html
   My bibliography  Save this article

An Interactive Online App for Predicting Diabetes via Machine Learning from Environment-Polluting Chemical Exposure Data

Author

Listed:
  • Rosy Oh

    (Department of Mathematics, Korea Military Academy, Seoul 01805, Korea)

  • Hong Kyu Lee

    (Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea)

  • Youngmi Kim Pak

    (Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea)

  • Man-Suk Oh

    (Department of Statistics, Ewha Womans University, Seoul 03760, Korea)

Abstract

The early prediction and identification of risk factors for diabetes may prevent or delay diabetes progression. In this study, we developed an interactive online application that provides the predictive probabilities of prediabetes and diabetes in 4 years based on a Bayesian network (BN) classifier, which is an interpretable machine learning technique. The BN was trained using a dataset from the Ansung cohort of the Korean Genome and Epidemiological Study (KoGES) in 2008, with a follow-up in 2012. The dataset contained not only traditional risk factors (current diabetes status, sex, age, etc.) for future diabetes, but it also contained serum biomarkers, which quantified the individual level of exposure to environment-polluting chemicals (EPC). Based on accuracy and the area under the curve (AUC), a tree-augmented BN with 11 variables derived from feature selection was used as our prediction model. The online application that implemented our BN prediction system provided a tool that performs customized diabetes prediction and allows users to simulate the effects of controlling risk factors for the future development of diabetes. The prediction results of our method demonstrated that the EPC biomarkers had interactive effects on diabetes progression and that the use of the EPC biomarkers contributed to a substantial improvement in prediction performance.

Suggested Citation

  • Rosy Oh & Hong Kyu Lee & Youngmi Kim Pak & Man-Suk Oh, 2022. "An Interactive Online App for Predicting Diabetes via Machine Learning from Environment-Polluting Chemical Exposure Data," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:5800-:d:812211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/10/5800/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/10/5800/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuji Sase & Daiki Kumagai & Teppei Suzuki & Hiroko Yamashina & Yuji Tani & Kensuke Fujiwara & Takumi Tanikawa & Hisashi Enomoto & Takeshi Aoyama & Wataru Nagai & Katsuhiko Ogasawara, 2020. "Characteristics of Type-2 Diabetics Who are Prone to High-Cost Medical Care Expenses by Bayesian Network," IJERPH, MDPI, vol. 17(15), pages 1-10, July.
    2. Henock M. Deberneh & Intaek Kim, 2021. "Prediction of Type 2 Diabetes Based on Machine Learning Algorithm," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    3. Scutari, Marco, 2010. "Learning Bayesian Networks with the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i03).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifan Qin & Jinlong Wu & Wen Xiao & Kun Wang & Anbing Huang & Bowen Liu & Jingxuan Yu & Chuhao Li & Fengyu Yu & Zhanbing Ren, 2022. "Machine Learning Models for Data-Driven Prediction of Diabetes by Lifestyle Type," IJERPH, MDPI, vol. 19(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    2. Vuong, Quan-Hoang & La, Viet-Phuong, 2019. "The bayesvl R package. User guide v0.8.1," OSF Preprints w5dx6, Center for Open Science.
    3. F. Cugnata & G. Perucca & S. Salini, 2017. "Bayesian networks and the assessment of universities' value added," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1785-1806, July.
    4. Roland R. Ramsahai, 2020. "Connecting actuarial judgment to probabilistic learning techniques with graph theory," Papers 2007.15475, arXiv.org.
    5. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    6. Myriam Patricia Cifuentes & Clara Mercedes Suarez & Ricardo Cifuentes & Noel Malod-Dognin & Sam Windels & Jose Fernando Valderrama & Paul D. Juarez & R. Burciaga Valdez & Cynthia Colen & Charles Phill, 2022. "Big Data to Knowledge Analytics Reveals the Zika Virus Epidemic as Only One of Multiple Factors Contributing to a Year-Over-Year 28-Fold Increase in Microcephaly Incidence," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    7. Silvia de Juan & Maria Dulce Subida & Andres Ospina-Alvarez & Ainara Aguilar & Miriam Fernandez, 2020. "Disentangling the socio-ecological drivers behind illegal fishing in a small-scale fishery managed by a TURF system," Papers 2012.08970, arXiv.org.
    8. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    9. Michail Tsagris, 2021. "A New Scalable Bayesian Network Learning Algorithm with Applications to Economics," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 341-367, January.
    10. Michael J. Brusco & Douglas Steinley & Ashley L. Watts, 2022. "Disentangling relationships in symptom networks using matrix permutation methods," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 133-155, March.
    11. Sangsung Park & Sunghae Jun, 2020. "Patent Keyword Analysis of Disaster Artificial Intelligence Using Bayesian Network Modeling and Factor Analysis," Sustainability, MDPI, vol. 12(2), pages 1-11, January.
    12. Federica Cugnata & Silvia Salini & Elena Siletti, 2021. "Deepening Well-Being Evaluation with Different Data Sources: A Bayesian Networks Approach," IJERPH, MDPI, vol. 18(15), pages 1-10, July.
    13. Bibartiu, Otto & Dürr, Frank & Rothermel, Kurt & Ottenwälder, Beate & Grau, Andreas, 2021. "Scalable k-out-of-n models for dependability analysis with Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    14. Lingfei Wang, 2021. "Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    15. Bruce G. Marcot & Anca M. Hanea, 2021. "What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?," Computational Statistics, Springer, vol. 36(3), pages 2009-2031, September.
    16. Ryan G. Lim & Osama Al-Dalahmah & Jie Wu & Maxwell P. Gold & Jack C. Reidling & Guomei Tang & Miriam Adam & David K. Dansu & Hye-Jin Park & Patrizia Casaccia & Ricardo Miramontes & Andrea M. Reyes-Ort, 2022. "Huntington disease oligodendrocyte maturation deficits revealed by single-nucleus RNAseq are rescued by thiamine-biotin supplementation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    17. Robert Stojnic & Audrey Qiuyan Fu & Boris Adryan, 2012. "A Graphical Modelling Approach to the Dissection of Highly Correlated Transcription Factor Binding Site Profiles," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-13, November.
    18. Yi Tan & Prakash P. Shenoy & Ben Sherwood & Catherine Shenoy & Melinda Gaddy & Mary E. Oehlert, 2024. "Bayesian Network Models for PTSD Screening in Veterans," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 495-509, March.
    19. Lidia Ceriani & Chiara Gigliarano, 2020. "Multidimensional Well-Being: A Bayesian Networks Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 237-263, November.
    20. Almudevar, Anthony, 2016. "An information theoretic approach to pedigree reconstruction," Theoretical Population Biology, Elsevier, vol. 107(C), pages 52-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:5800-:d:812211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.