IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i9p4909-d548923.html
   My bibliography  Save this article

A Review of Processes for Removing Antibiotics from Breeding Wastewater

Author

Listed:
  • Airu Huang

    (Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510000, China)

  • Muting Yan

    (Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510000, China)

  • Jingjun Lin

    (Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510000, China)

  • Lijie Xu

    (College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China)

  • He Gong

    (School of Chemical Engineering, ShengLi College, China University of Petroleum, Dongying 257000, China)

  • Han Gong

    (Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510000, China)

Abstract

Antibiotic pollution has become an increasingly serious issue due to the extensive application of antibiotics, their resistance to removal, and the harmful effects on aquatic environments and humans. Breeding wastewater is one of the most important sources of antibiotics in the aquatic environment because of the undeveloped treatment systems in breeding farms. It is imperative to establish an effective antibiotic removal process for breeding wastewater. This paper reviews the treatment methods used to remove antibiotics from breeding wastewater. The mechanisms and removal efficiency of constructed wetlands, biological treatments, advanced oxidation processes (AOPs), membrane technology, and combined treatments are explained in detail, and the advantages and disadvantages of the various treatment methods are compared and analyzed. Constructed wetlands have high removal rates for sulfonamide (SM), tetracycline (TC), and quinolone (QN). The antibiotic removal efficiency of biological treatment methods is affected by various processes and environmental factors, whereas AOPs and combined treatment methods have better antibiotic removal effects. Although it has broad application prospects, the application of membrane technology for the treatment of antibiotics in breeding wastewater needs further research.

Suggested Citation

  • Airu Huang & Muting Yan & Jingjun Lin & Lijie Xu & He Gong & Han Gong, 2021. "A Review of Processes for Removing Antibiotics from Breeding Wastewater," IJERPH, MDPI, vol. 18(9), pages 1-12, May.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:9:p:4909-:d:548923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/9/4909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/9/4909/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiao Zhang & Cui Hu & Qian Li & Chuxin Chen & Jianhui Hu & Xiaoyu Xiao & Mi Li & Xiaoming Zou & Liangliang Huang, 2022. "Hydrogen Peroxide Activated by Biochar-Supported Sulfidated Nano Zerovalent Iron for Removal of Sulfamethazine: Response Surface Method Approach," IJERPH, MDPI, vol. 19(16), pages 1-12, August.
    2. Do-Gun Kim & Shinnee Boldbaatar & Seok-Oh Ko, 2022. "Enhanced Adsorption of Tetracycline by Thermal Modification of Coconut Shell-Based Activated Carbon," IJERPH, MDPI, vol. 19(21), pages 1-16, October.
    3. Łukasz Sikorski & Agnieszka Bęś & Kazimierz Warmiński, 2023. "The Effect of Quinolones on Common Duckweed Lemna minor L., a Hydrophyte Bioindicator of Environmental Pollution," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    4. Antony V. Samrot & Samraj Wilson & Ram Singh Sanjay Preeth & Pandurangan Prakash & Mahendran Sathiyasree & Subramanian Saigeetha & Nagarajan Shobana & Senthilkumar Pachiyappan & Vinod Vincent Rajesh, 2023. "Sources of Antibiotic Contamination in Wastewater and Approaches to Their Removal—An Overview," Sustainability, MDPI, vol. 15(16), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:9:p:4909-:d:548923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.