IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i8p4036-d534466.html
   My bibliography  Save this article

Using Pressure-Driven Membrane Processes to Remove Emerging Pollutants from Aqueous Solutions

Author

Listed:
  • Asunción María Hidalgo

    (Chemical Engineering Department, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain)

  • Gerardo León

    (Chemical Engineering and Environmental Department, University of Cartagena, 30203 Cartagena, Spain)

  • María Dolores Murcia

    (Chemical Engineering Department, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain)

  • María Gómez

    (Chemical Engineering Department, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain)

  • Elisa Gómez

    (Chemical Engineering Department, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain)

  • José Luis Gómez

    (Chemical Engineering Department, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain)

Abstract

Currently, there is great concern about global water pollution. Wastewater generally contains substances called emerging pollutants, and if the removal of these pollutants is not given sufficient attention, the pollutants can enter into the water cycle and reach the water supply for domestic use, causing adverse effects on the well-being of people. In order to avoid this menace, a multitude of techniques to reduce the high concentration levels of these substances dissolved in water are being researched and developed. One of the most-used techniques for this goal is the physical-chemical separation of contaminants in water through membrane technology. In this study, different membranes were tested with the objective of investigating the removal of three emerging pollutants: caffeine, metformin, and methyl-paraben. Initially, a nanofiltration (NF) membrane was selected, and the influence of pressure was evaluated in the rejection coefficients and permeate fluxes. Next, a screening of three new membranes to remove methyl paraben was completed. The influence of the operating variables, working pressure, and methyl paraben-feed concentration was checked. Finally, the solution-diffusion model was applied to predict the behavior of the different membranes in the removal of methyl paraben. A good correlation between experimental and calculated values of permeate flux and methyl paraben concentration was obtained.

Suggested Citation

  • Asunción María Hidalgo & Gerardo León & María Dolores Murcia & María Gómez & Elisa Gómez & José Luis Gómez, 2021. "Using Pressure-Driven Membrane Processes to Remove Emerging Pollutants from Aqueous Solutions," IJERPH, MDPI, vol. 18(8), pages 1-14, April.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:4036-:d:534466
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/8/4036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/8/4036/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yonggang Wang & Xu Wang & Mingwei Li & Jing Dong & Changhong Sun & Guanyi Chen, 2018. "Removal of Pharmaceutical and Personal Care Products (PPCPs) from Municipal Waste Water with Integrated Membrane Systems, MBR-RO/NF," IJERPH, MDPI, vol. 15(2), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henry Rodríguez-Serin & Auria Gamez-Jara & Magaly De La Cruz-Noriega & Segundo Rojas-Flores & Magda Rodriguez-Yupanqui & Moises Gallozzo Cardenas & José Cruz-Monzon, 2022. "Literature Review: Evaluation of Drug Removal Techniques in Municipal and Hospital Wastewater," IJERPH, MDPI, vol. 19(20), pages 1-24, October.
    2. Mohanad Kamaz & S. Ranil Wickramasinghe & Satchithanandam Eswaranandam & Wen Zhang & Steven M. Jones & Michael J. Watts & Xianghong Qian, 2019. "Investigation into Micropollutant Removal from Wastewaters by a Membrane Bioreactor," IJERPH, MDPI, vol. 16(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:4036-:d:534466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.