IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i5p2638-d511534.html
   My bibliography  Save this article

Statewide Ambulance Coverage of a Mixed Region of Urban, Rural and Frontier under Travel Time Catchment Areas

Author

Listed:
  • EunSu Lee

    (Management Department, New Jersey City University, Jersey City, NJ 07311, USA)

  • Melanie McDonald

    (Management Department, New Jersey City University, Jersey City, NJ 07311, USA)

  • Erin O’Neill

    (Health Sciences Department, New Jersey City University, Jersey City, NJ 07305, USA)

  • William Montgomery

    (Earth and Environmental Sciences Department, New Jersey City University, Jersey City, NJ 07305, USA)

Abstract

This study examines the statewide service coverage of emergency medical services (EMS) in view of public health planners, policy makers, and ambulance service managers. The study investigates the statewide service coverage in a mixed region of urban, rural, and frontier regions to address the importance of ambulance service coverage at a large scale. The study incorporated statewide road networks for ambulance travel time, census blocks for population, and backup service coverage using geographic information systems (GIS). The catchment areas were delineated by the travel time after subtracting chute time for each Census Block as an analysis zone. Using the catchment areas from the ambulance base to the centroid of Census Block, the population and land coverage were calculated. The service shortage and multiple coverage areas were identified by the catchment areas. The study found that both reducing chute time and increasing the speed of emergency vehicles at the same time was significantly more effective than improving only one of two factors. The study shows that the service is improved significantly in frontier and urban areas by increasing driving time and chute time. However, in rural areas, the improvement is marginal owing to wider distribution than urban areas and shorter threshold response time than frontier areas. The public health planners and EMS managers benefit from the study to identify underserved areas and redistribute limited public resources.

Suggested Citation

  • EunSu Lee & Melanie McDonald & Erin O’Neill & William Montgomery, 2021. "Statewide Ambulance Coverage of a Mixed Region of Urban, Rural and Frontier under Travel Time Catchment Areas," IJERPH, MDPI, vol. 18(5), pages 1-21, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2638-:d:511534
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/5/2638/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/5/2638/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kathleen Hogan & Charles ReVelle, 1986. "Concepts and Applications of Backup Coverage," Management Science, INFORMS, vol. 32(11), pages 1434-1444, November.
    2. Baker, Joanna R. & Clayton, Edward R. & Moore, Laurence J., 1989. "Redesign of primary response areas for county ambulance services," European Journal of Operational Research, Elsevier, vol. 41(1), pages 23-32, July.
    3. G Erdoğan & E Erkut & A Ingolfsson & G Laporte, 2010. "Scheduling ambulance crews for maximum coverage," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 543-550, April.
    4. Pieter L van den Berg & Peter Fiskerstrand & Karen Aardal & Jørgen Einerkjær & Trond Thoresen & Jo Røislien, 2019. "Improving ambulance coverage in a mixed urban-rural region in Norway using mathematical modeling," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-14, April.
    5. Rajan Batta & Narasimha R. Mannur, 1990. "Covering-Location Models for Emergency Situations That Require Multiple Response Units," Management Science, INFORMS, vol. 36(1), pages 16-23, January.
    6. Susan Budge & Armann Ingolfsson & Dawit Zerom, 2010. "Empirical Analysis of Ambulance Travel Times: The Case of Calgary Emergency Medical Services," Management Science, INFORMS, vol. 56(4), pages 716-723, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah Alamri, 2023. "A Smart Spatial Routing and Accessibility Analysis System for EMS Using Catchment Areas of Voronoi Spatial Model and Time-Based Dijkstra’s Routing Algorithm," IJERPH, MDPI, vol. 20(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    2. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    3. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    4. Capar, Ismail & Kuby, Michael & Leon, V. Jorge & Tsai, Yu-Jiun, 2013. "An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations," European Journal of Operational Research, Elsevier, vol. 227(1), pages 142-151.
    5. DuBois, Eric & Schmidt, Adam & Albert, Laura A., 2021. "Location of trauma care resources with inter-facility patient transfers," Operations Research Perspectives, Elsevier, vol. 8(C).
    6. Leknes, Håkon & Aartun, Eirik Skorge & Andersson, Henrik & Christiansen, Marielle & Granberg, Tobias Andersson, 2017. "Strategic ambulance location for heterogeneous regions," European Journal of Operational Research, Elsevier, vol. 260(1), pages 122-133.
    7. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    8. Pal, Raktim & Bose, Indranil, 2009. "An optimization based approach for deployment of roadway incident response vehicles with reliability constraints," European Journal of Operational Research, Elsevier, vol. 198(2), pages 452-463, October.
    9. Pieter L. van den Berg & Guido A. G. Legemaate & Rob D. van der Mei, 2017. "Increasing the Responsiveness of Firefighter Services by Relocating Base Stations in Amsterdam," Interfaces, INFORMS, vol. 47(4), pages 352-361, August.
    10. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    11. KC, Kiran & Corcoran, Jonathan & Chhetri, Prem, 2020. "Measuring the spatial accessibility to fire stations using enhanced floating catchment method," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    12. Dipesh J. Patel & Rajan Batta & Rakesh Nagi, 2005. "Clustering Sensors in Wireless Ad Hoc Networks Operating in a Threat Environment," Operations Research, INFORMS, vol. 53(3), pages 432-442, June.
    13. Schmid, Verena & Doerner, Karl F., 2010. "Ambulance location and relocation problems with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1293-1303, December.
    14. Zaki, Ahmed S. & Cheng, Hsing Kenneth & Parker, Barnett R., 1997. "A Simulation Model for the Analysis and Management of An Emergency Service System," Socio-Economic Planning Sciences, Elsevier, vol. 31(3), pages 173-189, September.
    15. Marianov, Vladimir & Eiselt, H.A., 2024. "Fifty Years of Location Theory - A Selective Review," European Journal of Operational Research, Elsevier, vol. 318(3), pages 701-718.
    16. Detti, Paolo & Papalini, Francesco & Lara, Garazi Zabalo Manrique de, 2017. "A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare," Omega, Elsevier, vol. 70(C), pages 1-14.
    17. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    18. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    19. Firas Rifai, 2018. "Transfer of Knowhow and Experiences from Commercial Logistics into Humanitarian Logistics to Improve Rescue Missions in Disaster Areas," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 8(3), pages 1-63, August.
    20. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2638-:d:511534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.