IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i4p1869-d499546.html
   My bibliography  Save this article

Microplastics Environmental Effect and Risk Assessment on the Aquaculture Systems from South China

Author

Listed:
  • Yizheng Li

    (Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China)

  • Guanglong Chen

    (Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China)

  • Kaihang Xu

    (Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China)

  • Kai Huang

    (National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China)

  • Jun Wang

    (Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
    National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
    Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China)

Abstract

The small size of microplastics and their wide distribution in water environments have attracted worldwide attention and heated discussion, because of their ingestion by aquatic organisms. At present, there are few studies on microplastics pollution in freshwater aquaculture ponds, especially shrimp ponds. In this study, the aquaculture ponds in the Pearl River Estuary were investigated. The abundance and composition of microplastics in different environmental media were studied to explore the potential sources and risk levels of microplastics, so as to provide basic data for the study of microplastics pollution in aquaculture ponds. Microplastics were observed in water and sediment samples at all sampling sites, with the abundance of 6.6 × 10 3 –263.6 × 10 3 items/m 3 (surface water) and 566.67–2500 items/kg (sediment), respectively. Thirty-seven individuals collected in six ponds belong to four species. Microplastics were observed in the gastrointestinal tract (GIT) of all fishes and shrimps, with the abundance ranging from 3–92 items/individual (fish) and 4–21 items/individual (shrimp). Among all samples, microplastics with the size range of <1 mm and fiber shape were the most common. The main microplastic components were cellulose, polypropylene (PP), and polyethylene (PE). The results of potential risk assessment showed that the pollution investigation of microplastics should not only consider the abundance. Low abundance does not mean low risk. Taking the toxicity score and abundance of microplastics as evaluation indexes to reflect the pollution status of microplastics may make the results more reliable.

Suggested Citation

  • Yizheng Li & Guanglong Chen & Kaihang Xu & Kai Huang & Jun Wang, 2021. "Microplastics Environmental Effect and Risk Assessment on the Aquaculture Systems from South China," IJERPH, MDPI, vol. 18(4), pages 1-14, February.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1869-:d:499546
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/4/1869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/4/1869/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenxiu Wang & Yaoqiu Kuang & Ningsheng Huang, 2011. "Study on the Decomposition of Factors Affecting Energy-Related Carbon Emissions in Guangdong Province, China," Energies, MDPI, vol. 4(12), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee Tin Sin & Vineshaa Balakrishnan & Soo-Tueen Bee & Soo-Ling Bee, 2023. "A Review of the Current State of Microplastic Pollution in South Asian Countries," Sustainability, MDPI, vol. 15(8), pages 1-50, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    2. Caixia Liu & Rui Xu & Kaiji Xu & Yiwen Lin & Yingui Cao, 2023. "Carbon Emission Effects of Land Use in Chaobai River Region of Beijing–Tianjin–Hebei, China," Land, MDPI, vol. 12(6), pages 1-23, June.
    3. Hong Chang & Wei Sun & Xingsheng Gu, 2013. "Forecasting Energy CO 2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model," Energies, MDPI, vol. 6(3), pages 1-22, March.
    4. Jian Liu & Qingshan Yang & Yu Zhang & Wen Sun & Yiming Xu, 2019. "Analysis of CO 2 Emissions in China’s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition," Sustainability, MDPI, vol. 11(1), pages 1-28, January.
    5. Weiguang Chen & Qing Guo, 2017. "Assessing the Effect of Carbon Tariffs on International Trade and Emission Reduction of China’s Industrial Products under the Background of Global Climate Governance," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    6. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    7. Guokui Wang & Xingpeng Chen & Zilong Zhang & Chaolan Niu, 2015. "Influencing Factors of Energy-Related CO 2 Emissions in China: A Decomposition Analysis," Sustainability, MDPI, vol. 7(10), pages 1-19, October.
    8. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    9. Lai, Xiaodong & Liu, Jixian & Shi, Qian & Georgiev, Georgi & Wu, Guangdong, 2017. "Driving forces for low carbon technology innovation in the building industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 299-315.
    10. Yan Yan & Ancheng Pan & Chunyou Wu & Shusen Gui, 2019. "Factors Influencing Indirect Carbon Emission of Residential Consumption in China: A Case of Liaoning Province," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    11. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    12. Sheng-Wen Tseng, 2019. "Analysis of Energy-Related Carbon Emissions in Inner Mongolia, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    13. Yalan Zhao & Yaoqiu Kuang & Ningsheng Huang, 2016. "Decomposition Analysis in Decoupling Transport Output from Carbon Emissions in Guangdong Province, China," Energies, MDPI, vol. 9(4), pages 1-23, April.
    14. Xi Chen & Yingying Zhen & Zhanming Chen, 2023. "Household Carbon Footprint Characteristics and Driving Factors: A Global Comparison Based on a Dynamic Input–Output Model," Energies, MDPI, vol. 16(9), pages 1-18, May.
    15. Shuai Yang & Yu Wang & Wengang Ao & Yun Bai & Chuan Li, 2018. "Prediction and Analysis of CO 2 Emission in Chongqing for the Protection of Environment and Public Health," IJERPH, MDPI, vol. 15(3), pages 1-15, March.
    16. Xiaoli Chen & Zhiwei Liao & Zhihua Gao & Qian Li & Peng Lv & Guangyu Zheng & Kun Yang, 2022. "A Calculation Model of Carbon Emissions Based on Multi-Scenario Simulation Analysis of Electricity Consumption," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    17. Rina Wu & Jiquan Zhang & Yuhai Bao & Quan Lai & Siqin Tong & Youtao Song, 2016. "Decomposing the Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia Based on the LMDI Method," Sustainability, MDPI, vol. 8(7), pages 1-14, July.
    18. Haoran Zhao & Sen Guo & Huiru Zhao, 2017. "Energy-Related CO 2 Emissions Forecasting Using an Improved LSSVM Model Optimized by Whale Optimization Algorithm," Energies, MDPI, vol. 10(7), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1869-:d:499546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.