IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i4p1858-d499308.html
   My bibliography  Save this article

Backstroke to Breaststroke Turning Performance in Age-Group Swimmers: Hydrodynamic Characteristics and Pull-Out Strategy

Author

Listed:
  • Phornpot Chainok

    (Faculty of Sport Science, Burapha University, Chonburi 20131, Thailand
    Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D) and Porto Biomechanics Laboratory (LABIOMEP-UP), Faculty of Sport, University of Porto, 4099-002 Porto, Portugal)

  • Leandro Machado

    (Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D) and Porto Biomechanics Laboratory (LABIOMEP-UP), Faculty of Sport, University of Porto, 4099-002 Porto, Portugal)

  • Karla de Jesus

    (Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D) and Porto Biomechanics Laboratory (LABIOMEP-UP), Faculty of Sport, University of Porto, 4099-002 Porto, Portugal
    Faculty of Physical Education and Physiotherapy, Federal University of Amazonas, Amazonas 69067-005, Brazil)

  • J. Arturo Abraldes

    (Faculty of Sport Science, University of Murcia, 30720 San Javier, Spain)

  • Márcio Borgonovo-Santos

    (Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D) and Porto Biomechanics Laboratory (LABIOMEP-UP), Faculty of Sport, University of Porto, 4099-002 Porto, Portugal)

  • Ricardo J. Fernandes

    (Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D) and Porto Biomechanics Laboratory (LABIOMEP-UP), Faculty of Sport, University of Porto, 4099-002 Porto, Portugal)

  • João Paulo Vilas-Boas

    (Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D) and Porto Biomechanics Laboratory (LABIOMEP-UP), Faculty of Sport, University of Porto, 4099-002 Porto, Portugal)

Abstract

We compared the hydrodynamic characteristics and pull-out strategies of four backstroke-to-breaststroke turning techniques in young swimmers. Eighteen 11 and 12-year-old swimmers participated in a 4 week intervention program including 16 contextual interference sessions. The hydrodynamic variables were assessed through inverse dynamics, and the pull-out strategy kinematics were assessed with tracking markers followed by 12 land cameras and 11 underwater cameras. Swimmers randomly completed sixteen 30 m maximal backstroke-to breaststroke-open, somersault, bucket and crossover turns (four in each technique) with a 3 min rest. The data showed higher drag force, cross-sectional area and drag coefficient values for the first (compared with the second) gliding position. The crossover turn revealed the highest push-off velocity (2.17 ± 0.05 m·s −1 ), and the somersault turn demonstrated the lowest foot plant index (0.68 ± 0.03; 68%), which could have affected the first gliding, transition and second gliding depths (0.73 ± 0.13, 0.86 ± 0.17 and 0.76 ± 0.17 m). The data revealed the consistency of the time spent (4.86 ± 0.98 s) and breakout distance (6.04 ± 0.94 m) among the four turning techniques, and no differences were observed between them regarding time and average velocity up to 7.5 m. The hydrodynamic characteristics and pull-out strategy of the backstroke-to-breaststroke turns performed by the age group swimmers were independent of the selected technique.

Suggested Citation

  • Phornpot Chainok & Leandro Machado & Karla de Jesus & J. Arturo Abraldes & Márcio Borgonovo-Santos & Ricardo J. Fernandes & João Paulo Vilas-Boas, 2021. "Backstroke to Breaststroke Turning Performance in Age-Group Swimmers: Hydrodynamic Characteristics and Pull-Out Strategy," IJERPH, MDPI, vol. 18(4), pages 1-10, February.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1858-:d:499308
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/4/1858/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/4/1858/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ricardo Peterson Silveira & Susana Maria Soares & Rodrigo Zacca & Francisco B. Alves & Ricardo J. Fernandes & Flávio Antônio de Souza Castro & João Paulo Vilas-Boas, 2019. "A Biophysical Analysis on the Arm Stroke Efficiency in Front Crawl Swimming: Comparing Methods and Determining the Main Performance Predictors," IJERPH, MDPI, vol. 16(23), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santiago Veiga & Jorge Lorenzo & Alfonso Trinidad & Robin Pla & Andrea Fallas-Campos & Alfonso de la Rubia, 2022. "Kinematic Analysis of the Underwater Undulatory Swimming Cycle: A Systematic and Synthetic Review," IJERPH, MDPI, vol. 19(19), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrique P. Neiva & Ricardo J. Fernandes & Ricardo Cardoso & Daniel A. Marinho & J. Arturo Abraldes, 2021. "Monitoring Master Swimmers’ Performance and Active Drag Evolution along a Training Mesocycle," IJERPH, MDPI, vol. 18(7), pages 1-10, March.
    2. Mário J. Costa & Catarina C. Santos & Daniel A. Marinho & António J. Silva & Tiago M. Barbosa, 2020. "Modelling the 200 m Front-Crawl Performance Predictors at the Winter Season Peak," IJERPH, MDPI, vol. 17(6), pages 1-9, March.
    3. Yifan Liu & Gang Lu & Junke Chen & Qigang Zhu, 2021. "Exploration of Internal and External Factors of Swimmers’ Performance Based on Biofluid Mechanics and Computer Simulation," IJERPH, MDPI, vol. 18(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1858-:d:499308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.