IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i23p12558-d690390.html
   My bibliography  Save this article

Current Thoughts of Notch’s Role in Myoblast Regulation and Muscle-Associated Disease

Author

Listed:
  • Jeffrey C. Gerrard

    (Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA)

  • Jamison P. Hay

    (Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA)

  • Ryan N. Adams

    (Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA)

  • James C. Williams

    (Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA)

  • Joshua R. Huot

    (Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA)

  • Kaitlin M. Weathers

    (Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA)

  • Joseph S. Marino

    (Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA)

  • Susan T. Arthur

    (Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA)

Abstract

The evolutionarily conserved signaling pathway Notch is unequivocally essential for embryogenesis. Notch’s contribution to the muscle repair process in adult tissue is complex and obscure but necessary. Notch integrates with other signals in a functional antagonist manner to direct myoblast activity and ultimately complete muscle repair. There is profound recent evidence describing plausible mechanisms of Notch in muscle repair. However, the story is not definitive as evidence is slowly emerging that negates Notch’s importance in myoblast proliferation. The purpose of this review article is to examine the prominent evidence and associated mechanisms of Notch’s contribution to the myogenic repair phases. In addition, we discuss the emerging roles of Notch in diseases associated with muscle atrophy. Understanding the mechanisms of Notch’s orchestration is useful for developing therapeutic targets for disease.

Suggested Citation

  • Jeffrey C. Gerrard & Jamison P. Hay & Ryan N. Adams & James C. Williams & Joshua R. Huot & Kaitlin M. Weathers & Joseph S. Marino & Susan T. Arthur, 2021. "Current Thoughts of Notch’s Role in Myoblast Regulation and Muscle-Associated Disease," IJERPH, MDPI, vol. 18(23), pages 1-20, November.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:23:p:12558-:d:690390
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/23/12558/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/23/12558/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joe V. Chakkalakal & Kieran M. Jones & M. Albert Basson & Andrew S. Brack, 2012. "The aged niche disrupts muscle stem cell quiescence," Nature, Nature, vol. 490(7420), pages 355-360, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyan Wei & Angelos Rigopoulos & Matthias Lienhard & Sophie Pöhle-Kronawitter & Georgios Kotsaris & Julia Franke & Nikolaus Berndt & Joy Orezimena Mejedo & Hao Wu & Stefan Börno & Bernd Timmermann &, 2024. "Neurofibromin 1 controls metabolic balance and Notch-dependent quiescence of murine juvenile myogenic progenitors," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Felicia Lazure & Rick Farouni & Korin Sahinyan & Darren M. Blackburn & Aldo Hernández-Corchado & Gabrielle Perron & Tianyuan Lu & Adrien Osakwe & Jiannis Ragoussis & Colin Crist & Theodore J. Perkins , 2023. "Transcriptional reprogramming of skeletal muscle stem cells by the niche environment," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Adelaida R. Palla & Keren I. Hilgendorf & Ann V. Yang & Jaclyn P. Kerr & Aaron C. Hinken & Janos Demeter & Peggy Kraft & Nancie A. Mooney & Nora Yucel & David M. Burns & Yu Xin Wang & Peter K. Jackson, 2022. "Primary cilia on muscle stem cells are critical to maintain regenerative capacity and are lost during aging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Brendan Evano & Diljeet Gill & Irene Hernando-Herraez & Glenda Comai & Thomas M Stubbs & Pierre-Henri Commere & Wolf Reik & Shahragim Tajbakhsh, 2020. "Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-21, October.
    5. David E. Lee & Lauren K. McKay & Akshay Bareja & Yongwu Li & Alastair Khodabukus & Nenad Bursac & Gregory A. Taylor & Gurpreet S. Baht & James P. White, 2022. "Meteorin-like is an injectable peptide that can enhance regeneration in aged muscle through immune-driven fibro/adipogenic progenitor signaling," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:23:p:12558-:d:690390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.