IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i18p9428-d630382.html
   My bibliography  Save this article

Spatial Association of Urban Form and Particulate Matter

Author

Listed:
  • Yunmi Park

    (Architectural and Urban Systems Engineering, College of Engineering, Ewha Womans University, Seoul 03760, Korea)

  • Jiyeon Shin

    (Architectural and Urban Systems Engineering, College of Engineering, Ewha Womans University, Seoul 03760, Korea)

  • Ji Yi Lee

    (Department of Environmental Science and Engineering, College of Engineering, Ewha Womans University, Seoul 03760, Korea)

Abstract

Increasingly detrimental effects of fine particulate matter (PM) have been observed in Northeast Asia owing to its rapid economic development. Previous studies have found that dust, combustion, and chemical reactions are the major sources of PM; nevertheless, the spatial configuration of land use and land cover, which is of most interest to planners and landscape architects, also influences the PM levels. Here, we attempted to unveil the relationship between PM and different types of land use cover (i.e., developed, agricultural, woody, grass, and barren lands) in 122 municipalities of Korea. Landscape ecology metrics were applied to measure the spatial configuration of land use pattern and spatial lag models by taking into account the transboundary nature of air pollution, allowing us to conclude the following regarding PM levels: (1) the size of land cover type matters, but their spatial configuration also determines the variations in PM levels; (2) the contiguity and proximity of landcover patches are important; (3) the patterns of grasslands (e.g., simple, compact, and cluster (with large patches) patterns) and woodlands (e.g., complex, contiguous, and cluster (with large patches) patterns) considered desirable for minimizing PM are dissimilar in terms of contiguity.

Suggested Citation

  • Yunmi Park & Jiyeon Shin & Ji Yi Lee, 2021. "Spatial Association of Urban Form and Particulate Matter," IJERPH, MDPI, vol. 18(18), pages 1-14, September.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9428-:d:630382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/18/9428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/18/9428/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeemin Youn & Hyungkyoo Kim & Jaekyung Lee, 2023. "Relationships between Thermal Environment and Air Pollution of Seoul’s 25 Districts Using Vector Autoregressive Granger Causality," Sustainability, MDPI, vol. 15(23), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9428-:d:630382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.