IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i17p9395-d629910.html
   My bibliography  Save this article

Review and Improvement of Chemical Hazard Risk Management of Korean Occupational Safety and Health Agency

Author

Listed:
  • Saemi Shin

    (School of Health and Environmental Science, Korea University, Seoul 02841, Korea)

  • Sang-Hoon Byeon

    (School of Health and Environmental Science, Korea University, Seoul 02841, Korea)

Abstract

In 2012, the Korean Occupational Safety and Health Agency developed Chemical Hazard Risk Management (CHARM) as a risk assessment tool. This study aims to reorganize the CHARM technique by complementing its logical loopholes, while evaluating the risk to enterprises and verifying this technique by applying it to some enterprises in Korea. The optimized technique changed the method of quantitative assessment and evaluation criteria, matched the risk level with the required control level, and specified the use of control practice. For the target enterprises, for several assessment methods, risk levels, hazard bands, exposure bands, and the risk assessment results were derived, and the same types of options were compared. Fewer informational methods resulted in more conservative results of risk levels and hazard bands. Since the control status of the enterprises could not be confirmed and the substances handled at the target enterprises were limited in this study, a follow-up study should be performed with more target materials and additional information on the current control status of the enterprises.

Suggested Citation

  • Saemi Shin & Sang-Hoon Byeon, 2021. "Review and Improvement of Chemical Hazard Risk Management of Korean Occupational Safety and Health Agency," IJERPH, MDPI, vol. 18(17), pages 1-20, September.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:17:p:9395-:d:629910
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/17/9395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/17/9395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Chen, Fuzhong & Hsu, Chien-Lung & Lin, Arthur J. & Li, Haifeng, 2020. "Holding risky financial assets and subjective wellbeing: Empirical evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    3. Niël Almero Krüger & Natanya Meyer, 2021. "The Development of a Small and Medium-Sized Business Risk Management Intervention Tool," JRFM, MDPI, vol. 14(7), pages 1-14, July.
    4. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    5. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    6. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    7. Michael Greenberg & Paul Lioy & Birnur Ozbas & Nancy Mantell & Sastry Isukapalli & Michael Lahr & Tayfur Altiok & Joseph Bober & Clifton Lacy & Karen Lowrie & Henry Mayer & Jennifer Rovito, 2013. "Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1969-1986, November.
    8. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    9. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.
    10. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    11. Julie E. Shortridge & Benjamin F. Zaitchik, 2018. "Characterizing climate change risks by linking robust decision frameworks and uncertain probabilistic projections," Climatic Change, Springer, vol. 151(3), pages 525-539, December.
    12. Yacov Y. Haimes, 2006. "On the Definition of Vulnerabilities in Measuring Risks to Infrastructures," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 293-296, April.
    13. Angelo Panno & Annalisa Theodorou & Giuseppe Alessio Carbone & Evelina De Longis & Chiara Massullo & Gianluca Cepale & Giuseppe Carrus & Claudio Imperatori & Giovanni Sanesi, 2021. "Go Greener, Less Risk: Access to Nature Is Associated with Lower Risk Taking in Different Domains during the COVID-19 Lockdown," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    14. Peng Ye, 2022. "Remote Sensing Approaches for Meteorological Disaster Monitoring: Recent Achievements and New Challenges," IJERPH, MDPI, vol. 19(6), pages 1-28, March.
    15. Denitsa Angelova & Andrea Bigano & Francesco Bosello & Shouro Dasgupta & Silvio Giove, 2023. "Assessing systemic climate change risk by country. Reflections from the use of composite indicators," Working Papers 2023: 28, Department of Economics, University of Venice "Ca' Foscari".
    16. Agnieszka A. Tubis & Emilia T. Skupień & Stefan Jankowski & Jacek Ryczyński, 2022. "Risk Assessment of Human Factors of Logistic Handling of Deliveries at an LNG Terminal," Energies, MDPI, vol. 15(8), pages 1-24, April.
    17. Ioanna Ioannou & Jaime E. Cadena & Willy Aspinall & David Lange & Daniel Honfi & Tiziana Rossetto, 2022. "Prioritization of hazards for risk and resilience management through elicitation of expert judgement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2773-2795, July.
    18. Alexander A. Ganin & Phuoc Quach & Mahesh Panwar & Zachary A. Collier & Jeffrey M. Keisler & Dayton Marchese & Igor Linkov, 2020. "Multicriteria Decision Framework for Cybersecurity Risk Assessment and Management," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 183-199, January.
    19. de Vries, J. Pierre, 2017. "Risk-informed interference assessment: A quantitative basis for spectrum allocation decisions," Telecommunications Policy, Elsevier, vol. 41(5), pages 434-446.
    20. Raymond F. Boykin & Mardyros Kazarians & Raymond A. Freeman, 1986. "Comparative Fire Risk Study of PCB Transformers," Risk Analysis, John Wiley & Sons, vol. 6(4), pages 477-488, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:17:p:9395-:d:629910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.