IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i16p8740-d617245.html
   My bibliography  Save this article

Influence of Amino Acid Feeding on Production of Calcimycin and Analogs in Streptomyces chartreusis

Author

Listed:
  • Kirstin I. Arend

    (Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany)

  • Julia E. Bandow

    (Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany)

Abstract

Streptomyces chartreusis NRRL 3882 produces the polyether ionophore calcimycin and a variety of analogs, which originate from the same biosynthetic gene cluster. The role of calcimycin and its analogs for the producer is unknown, but calcimycin has strong antibacterial activity. Feeding experiments were performed in chemically defined medium systematically supplemented with proteinogenic amino acids to analyze their individual effects on calcimycin synthesis. In the culture supernatants, in addition to known calcimycin analogs, eight so far unknown analogs were detected using LC-MS/MS. Under most conditions cezomycin was the compound produced in highest amounts. The highest production of calcimycin was detected upon feeding with glutamine. Supplementation of the medium with glutamic acid resulted in a decrease in calcimycin production, and supplementation of other amino acids such as tryptophan, lysine, and valine resulted in the decrease in the synthesis of calcimycin and of the known intermediates of the biosynthetic pathway. We demonstrated that the production of calcimycin and its analogs is strongly dependent on amino acid supply. Utilization of amino acids as precursors and as nitrogen sources seem to critically influence calcimycin synthesis. Even amino acids not serving as direct precursors resulted in a different product profile regarding the stoichiometry of calcimycin analogs. Only slight changes in cultivation conditions can lead to major changes in the metabolic output, which highlights the hidden potential of biosynthetic gene clusters. We emphasize the need to further study the extent of this potential to understand the ecological role of metabolite diversity originating from single biosynthetic gene clusters.

Suggested Citation

  • Kirstin I. Arend & Julia E. Bandow, 2021. "Influence of Amino Acid Feeding on Production of Calcimycin and Analogs in Streptomyces chartreusis," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8740-:d:617245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/16/8740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/16/8740/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8740-:d:617245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.