IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i16p8644-d615270.html
   My bibliography  Save this article

Wind Environment Simulation Accuracy in Traditional Villages with Complex Layouts Based on CFD

Author

Listed:
  • Xingbo Yao

    (Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

  • Shuo Han

    (School of Communication Engineering, Xidian University, Xi’an 710071, China)

  • Bart Dewancker

    (Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

Abstract

Using wind speed, wind direction, and turbulence intensity values as evaluation indicators, the ventilation performance of villages with complex building layouts was studied. We used the SKE, RNG, and RKE solvers in CFD-3D steady-state Reynolds-averaged Navier–Stokes (RANS) to simulate the wind environment of a village. The findings show that for the simulation of rural wind environments with complex building layouts, steady-state simulation solvers need to be evaluated in detail to verify their accuracy. In this study, a village with a complex architectural layout in Southern Shaanxi, China, was taken as the research object, and three steady-state simulation solvers were used to evaluate the ventilation performance of the village. The simulated data were compared with the measured data to find the most suitable solver for this kind of village wind environment simulation. The results show that for the simulation of the village wind environment with a complex building layout, the RNG simulation results have the lowest reliability among the three steady-state solvers. The reliability of wind speed distribution and turbulence intensity distribution are 0.7881 and 0.2473, respectively. However, the wind speed and turbulence intensity values obtained by the SKE solver are the closest to the measured values, which are 0.8625 and 0.9088, respectively. Therefore, for villages with complex building layouts, the SKE solver should be the first choice for simulating wind environment distribution. When using the RNG solver, the overall turbulence intensity value obtained is higher than the measured value. The average deviation between the simulated data and SKE and RKE at a height of 1.7 m is 42.61%. The main reason for this is that RNG overestimates the vortices and underestimates the airflow rate in the building intervals.

Suggested Citation

  • Xingbo Yao & Shuo Han & Bart Dewancker, 2021. "Wind Environment Simulation Accuracy in Traditional Villages with Complex Layouts Based on CFD," IJERPH, MDPI, vol. 18(16), pages 1-21, August.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8644-:d:615270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/16/8644/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/16/8644/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanhao Liu & Jinming Wang & Wei Bai & Bart Dewancker & Weijun Gao, 2024. "A Numerical Simulation-Based Adaptation of the Pedestrian-Level Wind Environment in Village Streets: A Case Study on the Chuan Dao Area of the Hanjiang River in Southern Shaanxi," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    2. Qiang Gao & Shuai Lian & Hongwei Yan, 2022. "Aerodynamic Performance Analysis of Adaptive Drag-Lift Hybrid Type Vertical Axis Wind Turbine," Energies, MDPI, vol. 15(15), pages 1-15, August.
    3. Zhixin Xu & Xia Huang & Xin Zheng & Ji-Yu Deng & Bo Sun, 2024. "A Performance and Data-Driven Method for Optimization of Traditional Courtyards," Sustainability, MDPI, vol. 16(13), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8644-:d:615270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.