IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i16p8530-d613181.html
   My bibliography  Save this article

Comparison of Random Forest and Gradient Boosting Machine Models for Predicting Demolition Waste Based on Small Datasets and Categorical Variables

Author

Listed:
  • Gi-Wook Cha

    (Department of Architectural Engineering, Dankook University, Yongin 16890, Korea)

  • Hyeun-Jun Moon

    (Department of Architectural Engineering, Dankook University, Yongin 16890, Korea)

  • Young-Chan Kim

    (Department of Safety Engineering, Dongguk University—Gyeongju, Gyeongju 38066, Korea)

Abstract

Construction and demolition waste (DW) generation information has been recognized as a tool for providing useful information for waste management. Recently, numerous researchers have actively utilized artificial intelligence technology to establish accurate waste generation information. This study investigated the development of machine learning predictive models that can achieve predictive performance on small datasets composed of categorical variables. To this end, the random forest (RF) and gradient boosting machine (GBM) algorithms were adopted. To develop the models, 690 building datasets were established using data preprocessing and standardization. Hyperparameter tuning was performed to develop the RF and GBM models. The model performances were evaluated using the leave-one-out cross-validation technique. The study demonstrated that, for small datasets comprising mainly categorical variables, the bagging technique (RF) predictions were more stable and accurate than those of the boosting technique (GBM). However, GBM models demonstrated excellent predictive performance in some DW predictive models. Furthermore, the RF and GBM predictive models demonstrated significantly differing performance across different types of DW. Certain RF and GBM models demonstrated relatively low predictive performance. However, the remaining predictive models all demonstrated excellent predictive performance at R 2 values > 0.6, and R values > 0.8. Such differences are mainly because of the characteristics of features applied to model development; we expect the application of additional features to improve the performance of the predictive models. The 11 DW predictive models developed in this study will be useful for establishing detailed DW management strategies.

Suggested Citation

  • Gi-Wook Cha & Hyeun-Jun Moon & Young-Chan Kim, 2021. "Comparison of Random Forest and Gradient Boosting Machine Models for Predicting Demolition Waste Based on Small Datasets and Categorical Variables," IJERPH, MDPI, vol. 18(16), pages 1-16, August.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8530-:d:613181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/16/8530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/16/8530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gi-Wook Cha & Hyeun Jun Moon & Young-Min Kim & Won-Hwa Hong & Jung-Ha Hwang & Won-Jun Park & Young-Chan Kim, 2020. "Development of a Prediction Model for Demolition Waste Generation Using a Random Forest Algorithm Based on Small DataSets," IJERPH, MDPI, vol. 17(19), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gi-Wook Cha & Choon-Wook Park & Young-Chan Kim, 2024. "Optimal Machine Learning Model to Predict Demolition Waste Generation for a Circular Economy," Sustainability, MDPI, vol. 16(16), pages 1-20, August.
    2. Gi-Wook Cha & Won-Hwa Hong & Young-Chan Kim, 2023. "Performance Improvement of Machine Learning Model Using Autoencoder to Predict Demolition Waste Generation Rate," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    3. Gi-Wook Cha & Se-Hyu Choi & Won-Hwa Hong & Choon-Wook Park, 2023. "Developing a Prediction Model of Demolition-Waste Generation-Rate via Principal Component Analysis," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    4. Gi-Wook Cha & Won-Hwa Hong & Se-Hyu Choi & Young-Chan Kim, 2023. "Developing an Optimal Ensemble Model to Estimate Building Demolition Waste Generation Rate," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    5. Nehal Elshaboury & Abobakr Al-Sakkaf & Eslam Mohammed Abdelkader & Ghasan Alfalah, 2022. "Construction and Demolition Waste Management Research: A Science Mapping Analysis," IJERPH, MDPI, vol. 19(8), pages 1-25, April.
    6. Junyoung Jeong & Keuntae Cho, 2024. "Proposing Machine Learning Models Suitable for Predicting Open Data Utilization," Sustainability, MDPI, vol. 16(14), pages 1-23, July.
    7. Gi-Wook Cha & Se-Hyu Choi & Won-Hwa Hong & Choon-Wook Park, 2022. "Development of Machine Learning Model for Prediction of Demolition Waste Generation Rate of Buildings in Redevelopment Areas," IJERPH, MDPI, vol. 20(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunlong Han & Conghui Li & Linfeng Zheng & Gang Lei & Li Li, 2023. "Remaining Useful Life Prediction of Lithium-Ion Batteries by Using a Denoising Transformer-Based Neural Network," Energies, MDPI, vol. 16(17), pages 1-16, August.
    2. Gi-Wook Cha & Se-Hyu Choi & Won-Hwa Hong & Choon-Wook Park, 2022. "Development of Machine Learning Model for Prediction of Demolition Waste Generation Rate of Buildings in Redevelopment Areas," IJERPH, MDPI, vol. 20(1), pages 1-17, December.
    3. Gi-Wook Cha & Won-Hwa Hong & Young-Chan Kim, 2023. "Performance Improvement of Machine Learning Model Using Autoencoder to Predict Demolition Waste Generation Rate," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    4. Christian Nnaemeka Egwim & Hafiz Alaka & Eren Demir & Habeeb Balogun & Razak Olu-Ajayi & Ismail Sulaimon & Godoyon Wusu & Wasiu Yusuf & Adegoke A. Muideen, 2023. "Artificial Intelligence in the Construction Industry: A Systematic Review of the Entire Construction Value Chain Lifecycle," Energies, MDPI, vol. 17(1), pages 1-21, December.
    5. Gi-Wook Cha & Won-Hwa Hong & Se-Hyu Choi & Young-Chan Kim, 2023. "Developing an Optimal Ensemble Model to Estimate Building Demolition Waste Generation Rate," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    6. Gi-Wook Cha & Se-Hyu Choi & Won-Hwa Hong & Choon-Wook Park, 2023. "Developing a Prediction Model of Demolition-Waste Generation-Rate via Principal Component Analysis," IJERPH, MDPI, vol. 20(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8530-:d:613181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.