Propensity Score Analysis with Partially Observed Baseline Covariates: A Practical Comparison of Methods for Handling Missing Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jiang, Wei & Josse, Julie & Lavielle, Marc, 2020. "Logistic regression with missing covariates—Parameter estimation, model selection and prediction within a joint-modeling framework," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
- Ben B. Hansen, 2004. "Full Matching in an Observational Study of Coaching for the SAT," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 609-618, January.
- Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
- Alessandra Mattei, 2009. "Estimating and using propensity score in presence of missing background data: an application to assess the impact of childbearing on wellbeing," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(2), pages 257-273, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Emily Mena & Katharina Stahlmann & Klaus Telkmann & Gabriele Bolte & on behalf of the AdvanceGender Study Group, 2023. "Intersectionality-Informed Sex/Gender-Sensitivity in Public Health Monitoring and Reporting (PHMR): A Case Study Assessing Stratification on an “Intersectional Gender-Score”," IJERPH, MDPI, vol. 20(3), pages 1-15, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
- Martin Cousineau & Vedat Verter & Susan A. Murphy & Joelle Pineau, 2022. "Estimating causal effects with optimization-based methods: A review and empirical comparison," Papers 2203.00097, arXiv.org.
- Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
- Turner, Alex J. & Fichera, Eleonora & Sutton, Matt, 2021. "The effects of in-utero exposure to influenza on mental health and mortality risk throughout the life-course," Economics & Human Biology, Elsevier, vol. 43(C).
- Zichen Deng & Maarten Lindeboom, 2021. "Early-life Famine Exposure, Hunger Recall and Later-life Health," Tinbergen Institute Discussion Papers 21-054/V, Tinbergen Institute.
- Baron, Opher & Callen, Jeffrey L. & Segal, Dan, 2023. "Does the bullwhip matter economically? A cross-sectional firm-level analysis," International Journal of Production Economics, Elsevier, vol. 259(C).
- Susan Athey & Guido W. Imbens & Stefan Wager, 2018.
"Approximate residual balancing: debiased inference of average treatment effects in high dimensions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2016. "Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions," Papers 1604.07125, arXiv.org, revised Jan 2018.
- Mortimer, Duncan & Harris, Anthony & Wijnands, Jasper S. & Stevenson, Mark, 2021. "Persistence or reversal? The micro-effects of time-varying financial penalties," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 72-86.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022.
"Covariate distribution balance via propensity scores,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2018. "Covariate Distribution Balance via Propensity Scores," Papers 1810.01370, arXiv.org, revised Apr 2020.
- Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
- Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
- Sourafel Girma & Holger Görg, 2022.
"Productivity effects of processing and ordinary export market entry: A time‐varying treatments approach,"
Review of International Economics, Wiley Blackwell, vol. 30(3), pages 836-853, August.
- Sourafel Girma & Holger Goerg, 2020. "Productivity effects of processing and ordinary export market entry: A time-varying treatments approach," Discussion Papers 2020-18, University of Nottingham, GEP.
- Girma, Sourafel & Görg, Holger, 2021. "Productivity effects of processing and ordinary export market entry: A time-varying treatments approach," KCG Working Papers 23, Kiel Centre for Globalization (KCG).
- Meyer, Maximilian & Hulke, Carolin & Kamwi, Jonathan & Kolem, Hannah & Börner, Jan, 2022. "Spatially heterogeneous effects of collective action on environmental dependence in Namibia’s Zambezi region," World Development, Elsevier, vol. 159(C).
- Oyenubi, Adeola & Kollamparambil, Umakrishnan, 2023. "Does noncompliance with COVID-19 regulations impact the depressive symptoms of others?," Economic Modelling, Elsevier, vol. 120(C).
- Martín-García, Jaime & Gómez-Limón, José A. & Arriaza, Manuel, 2024. "Conversion to organic farming: Does it change the economic and environmental performance of fruit farms?," Ecological Economics, Elsevier, vol. 220(C).
- Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
- Zhenzhen Xu & John D. Kalbfleisch, 2013. "Repeated Randomization and Matching in Multi-Arm Trials," Biometrics, The International Biometric Society, vol. 69(4), pages 949-959, December.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021.
"A unified framework for efficient estimation of general treatment models,"
Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2018. "A Unified Framework for Efficient Estimation of General Treatment Models," Papers 1808.04936, arXiv.org, revised Aug 2018.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," CeMMAP working papers CWP64/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ai, C. & Linton, O. & Motegi, K. & Zhang, Z., 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," Cambridge Working Papers in Economics 1934, Faculty of Economics, University of Cambridge.
- Raiden B. Hasegawa & Sameer K. Deshpande & Dylan S. Small & Paul R. Rosenbaum, 2020. "Causal Inference With Two Versions of Treatment," Journal of Educational and Behavioral Statistics, , vol. 45(4), pages 426-445, August.
- Plamen Nikolov & Hongjian Wang & Kevin Acker, 2020.
"Wage premium of Communist Party membership: Evidence from China,"
Pacific Economic Review, Wiley Blackwell, vol. 25(3), pages 309-338, August.
- Wang, Hongjian & Nikolov, Plamen & Acker, Kevin, 2019. "The Wage Premium of Communist Party Membership: Evidence from China," IZA Discussion Papers 12874, Institute of Labor Economics (IZA).
- Plamen Nikolov & Hongjian Wang & Kevin Acker, 2020. "The Wage Premium of Communist Party Membership: Evidence from China," Papers 2007.13549, arXiv.org.
More about this item
Keywords
propensity score; missing data; non-interventional studies;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6694-:d:579352. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.