IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i8p2726-d345969.html
   My bibliography  Save this article

Neurocognitive Inhibitory Control Ability Performance and Correlations with Biochemical Markers in Obese Women

Author

Listed:
  • Huei-Jhen Wen

    (Center of Physical Education, College of Education and Communication, Tzu Chi University, Hualien 970301, Taiwan
    Sports Medicine Center, Tzu Chi Hospital, Hualien 970410, Taiwan)

  • Chia-Liang Tsai

    (Institution of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan 701401, Taiwan)

Abstract

Inhibitory control, the ability to suppress prepotent responses and resist irrelevant stimuli, is thought to play a critical role in the maintenance of obesity. However, electrophysiological performance related to different inhibitory control processes and their relationship with motor response inhibition and cognitive interference and potential biochemical mechanisms in middle-aged, obese women are as yet unclear. This work thus compared different neurocognitive Go/Nogo and Stroop task performance in healthy sedentary normal-weight and obese women, as well as their correlation with biochemical markers. Twenty-six healthy, sedentary obese women (obese group) and 26 age-matched (21–45 years old) normal-weight women (control group) were the participants, categorized by body mass index and percentage fat, as measured with dual-energy X-ray absorptiometry. They provided a fasting blood sample and performed two cognitive tasks (i.e., Go/Nogo and Stroop tasks) with concomitant electrophysiological recording. The N2 and P3 waveforms of event-related potential (ERP) were recorded. Although the between-group behavioral performance was comparable, the obese group relative to the control group showed significantly longer N2 latency and smaller P3 amplitude in the Stroop task and smaller N2 and P3 amplitudes in the Go/Nogo task. Significant inflammation response indices (e.g., CRP, leptin, adiponectin/leptin ratio) were observed in the obese group. The Nogo P3 amplitude was significantly correlated with the adiponectin/leptin ratio. These findings indicate that healthy obese women still exhibit deviant neurophysiological performance when performing Go/Nogo and Stroop tasks, where the adiponectin/leptin ratio could be one of the influencing factors for the deficit in neural processes of motor response inhibition.

Suggested Citation

  • Huei-Jhen Wen & Chia-Liang Tsai, 2020. "Neurocognitive Inhibitory Control Ability Performance and Correlations with Biochemical Markers in Obese Women," IJERPH, MDPI, vol. 17(8), pages 1-19, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2726-:d:345969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/8/2726/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/8/2726/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2726-:d:345969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.