IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i4p1278-d321705.html
   My bibliography  Save this article

Reductions in Labor Capacity from Intensified Heat Stress in China under Future Climate Change

Author

Listed:
  • Xingcai Liu

    (Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

Heat stress would be intensified under global warming and become a key issue of occupational health for labor force working outdoors. The changes in labor force would affect regional socioeconomic development. So far, changes in labor force due to heat stress are not well documented in China. In this study, heat stress based on wet-bulb globe temperature (WBGT), which combines the thermal effects on the human body of both temperature and humidity, is projected for the near future (2021–2050) and the end of the century (2071–2099). Changes in labor capacity are then estimated for heavy and light work based on the relationships between labor capacity and the WBGT. Low and high emission scenarios, namely Representative Concentration Pathway (RCP) 2.6 and RCP8.5, are considered for the future projections in the hottest two months (July and August) in China. Results suggest that the WBGT would increase by more than 3–5 °C by the end of the century. The labor capacity would decrease by more than 40% for both heavy and light work in considerable areas such as South and East China, where there is a large population and developed economy. This indicates that labor force would reduce significantly due to intensified heat stress. This study calls for special attention to the impact of heat stress on occupational health and the labor force in China in the future.

Suggested Citation

  • Xingcai Liu, 2020. "Reductions in Labor Capacity from Intensified Heat Stress in China under Future Climate Change," IJERPH, MDPI, vol. 17(4), pages 1-15, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:4:p:1278-:d:321705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/4/1278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/4/1278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Sun & Xuebin Zhang & Francis W. Zwiers & Lianchun Song & Hui Wan & Ting Hu & Hong Yin & Guoyu Ren, 2014. "Rapid increase in the risk of extreme summer heat in Eastern China," Nature Climate Change, Nature, vol. 4(12), pages 1082-1085, December.
    2. John P. Dunne & Ronald J. Stouffer & Jasmin G. John, 2013. "Reductions in labour capacity from heat stress under climate warming," Nature Climate Change, Nature, vol. 3(6), pages 563-566, June.
    3. Kerstin K. Zander & Wouter J. W. Botzen & Elspeth Oppermann & Tord Kjellstrom & Stephen T. Garnett, 2015. "Heat stress causes substantial labour productivity loss in Australia," Nature Climate Change, Nature, vol. 5(7), pages 647-651, July.
    4. Karen Smoyer-Tomic & Robyn Kuhn & Alana Hudson, 2003. "Heat Wave Hazards: An Overview of Heat Wave Impacts in Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(2), pages 465-486, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Hall & Ana Horta, 2023. "Broad Scale Spatial Modelling of Wet Bulb Globe Temperature to Investigate Impact of Shade and Airflow on Heat Injury Risk and Labour Capacity in Warm to Hot Climates," IJERPH, MDPI, vol. 20(15), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Yi & Albert P. C. Chan, 2017. "Effects of Heat Stress on Construction Labor Productivity in Hong Kong: A Case Study of Rebar Workers," IJERPH, MDPI, vol. 14(9), pages 1-14, September.
    2. Zander, Kerstin K. & Mathew, Supriya, 2019. "Estimating economic losses from perceived heat stress in urban Malaysia," Ecological Economics, Elsevier, vol. 159(C), pages 84-90.
    3. Haqiqi, Iman & Buzan, Jonathan & Zanetti De Lima, Cicero & Hertel, Thomas, 2020. "Margins of Adaptation to Human Heat Stress: Local, National, and Global Socioeconomic Responses," Conference papers 333237, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Anton Orlov & Jana Sillmann & Asbjørn Aaheim & Kristin Aunan & Karianne Bruin, 2019. "Economic Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case Study of Europe," Economics of Disasters and Climate Change, Springer, vol. 3(3), pages 191-211, October.
    5. Ali Ahmadalipour & Hamid Moradkhani & Mukesh Kumar, 2019. "Mortality risk from heat stress expected to hit poorest nations the hardest," Climatic Change, Springer, vol. 152(3), pages 569-579, March.
    6. Lopez-Uribe, Maria del Pilar & Castells-Quintana, David & McDermott, Thomas K. J., 2017. "Geography, institutions and development: a review ofthe long-run impacts of climate change," LSE Research Online Documents on Economics 65147, London School of Economics and Political Science, LSE Library.
    7. Hertel, Thomas W. & de Lima, Cicero Z., 2020. "Viewpoint: Climate impacts on agriculture: Searching for keys under the streetlight," Food Policy, Elsevier, vol. 95(C).
    8. Miranda Dally & Jaime Butler-Dawson & Lyndsay Krisher & Andrew Monaghan & David Weitzenkamp & Cecilia Sorensen & Richard J Johnson & Elizabeth J Carlton & Claudia Asensio & Liliana Tenney & Lee S Newm, 2018. "The impact of heat and impaired kidney function on productivity of Guatemalan sugarcane workers," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.
    9. Kilian Kuhla & Sven Norman Willner & Christian Otto & Leonie Wenz & Anders Levermann, 2021. "Future heat stress to reduce people’s purchasing power," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    10. Donghyun Kim & Up Lim, 2017. "Wage Differentials between Heat-Exposure Risk and No Heat-Exposure Risk Groups," IJERPH, MDPI, vol. 14(7), pages 1-17, June.
    11. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    12. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    13. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    14. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    15. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    16. Agarwala, Matthew & Burke, Matt & Klusak, Patrycja & Mohaddes, Kamiar & Volz, Ulrich & Zenghelis, Dimitri, 2021. "Climate Change And Fiscal Sustainability: Risks And Opportunities," National Institute Economic Review, National Institute of Economic and Social Research, vol. 258, pages 28-46, November.
    17. Katherine M. Pedersen & Tania M. Busch Isaksen & Marissa G. Baker & Noah Seixas & Nicole A. Errett, 2021. "Climate Change Impacts and Workforce Development Needs in Federal Region X: A Qualitative Study of Occupational Health and Safety Professionals’ Perceptions," IJERPH, MDPI, vol. 18(4), pages 1-13, February.
    18. Mariano J. Rabassa & Mariana Conte Grand & Christian M. García-Witulski, 2021. "Heat warnings and avoidance behavior: evidence from a bike-sharing system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 1-28, January.
    19. CONTE KEIVABU, Risto, 2020. "Too hot to study? Gender and SES differences in the effect of temperature on school performance," SocArXiv whtf5, Center for Open Science.
    20. Letian Li & Boyang Sun & Zhuqiang Hu & Jun Zhang & Song Gao & Haifeng Bian & Jiansong Wu, 2022. "Heat Strain Evaluation of Power Grid Outdoor Workers Based on a Human Bioheat Model," IJERPH, MDPI, vol. 19(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:4:p:1278-:d:321705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.