IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i3p973-d316497.html
   My bibliography  Save this article

Assessing Health Impacts of Conventional Centralized and Emerging Resource Recovery-Oriented Decentralized Water Systems

Author

Listed:
  • Xiaobo Xue Romeiko

    (Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12222, USA)

Abstract

Energy shortage and climate change call for sustainable water and wastewater infrastructure capable of simultaneously recovering energy, mitigating greenhouse gas emissions, and protecting public health. Although energy and greenhouse gas emissions of water and wastewater infrastructure are extensively studied, the human health impacts of innovative infrastructure designed under the principles of decentralization and resource recovery are not fully understood. In order to fill this knowledge gap, this study assesses and compares the health impacts of three representative systems by integrating life cycle and microbial risk assessment approaches. This study found that the decentralized system options, such as on-site septic tank and composting or urine diverting toilets, presented much lower life cycle cancer and noncancer impacts than the centralized system. The microbial risks of decentralized systems options were also lower than those of the centralized system. Moreover, life cycle cancer and noncancer impacts contributed to approximately 95% of total health impacts, while microbial risks were associated with the remaining 5%. Additionally, the variability and sensitivity assessment indicated that reducing energy use of wastewater treatment and water distribution is effective in mitigating total health damages of the centralized system, while reducing energy use of water treatment is effective in mitigating total health damages of the decentralized systems.

Suggested Citation

  • Xiaobo Xue Romeiko, 2020. "Assessing Health Impacts of Conventional Centralized and Emerging Resource Recovery-Oriented Decentralized Water Systems," IJERPH, MDPI, vol. 17(3), pages 1-16, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:973-:d:316497
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/3/973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/3/973/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:973-:d:316497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.