IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i16p5724-d396106.html
   My bibliography  Save this article

The Unified Efficiency Evaluation of China’s Industrial Waste Gas Considering Pollution Prevention and End-Of-Pipe Treatment

Author

Listed:
  • Yanhong Tang

    (School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China)

  • Yingwen Chen

    (School of Management, Harbin Institute of Technology, Harbin 150001, China)

  • Rui Yang

    (School of Management, Harbin Institute of Technology, Harbin 150001, China)

  • Xin Miao

    (School of Management, Harbin Institute of Technology, Harbin 150001, China)

Abstract

With the deepening of industrialization and urbanization in China, air pollution has become the most serious environmental issue due to huge energy consumption, which threatens the health of residents and the sustainable development of the country. Increasing attention has been paid to the efficiency evaluation of industrial system due to its fast development and severe air pollution emissions, but the efficiency evaluation on China’s industrial waste gas still has scope for improvement. This paper proposes a global non-radial Network Data Envelopment Analysis (NDEA) model from the perspective of pollution prevention (PP) and end-of-pipe treatment (ET), to explore the potential reduction of generation and emission of air pollutants in China’s industrial system. Given the differences of different air pollution treatment capacities, the ET stage is further subdivided into three parallel sub-stages, corresponding to SO 2 , NO X , and soot and dust (SD), respectively. Then, grey relation analysis (GRA) is adopted to figure out the key factor affecting the unified efficiency. The main findings are summarized as follows: firstly, the unified efficiency of China’s industrial waste gas underperformed nationwide, and most provinces had the potential to reduce the generation and emission of industrial waste gas. Secondly, the PP efficiency outperformed the ET efficiency in many provinces and the efficiency gap between two stages increasingly narrowed except in 2014. Thirdly, the unified efficiency in the eastern area performed well, while the area disparities increased significantly after 2012. Fourthly, significant differences were found in three ET efficiencies and the ET efficiency of NO X was higher than that of SO 2 and SD in the sample period. Finally, the results of GRA indicated that different air pollutants had distinct influence on the improvement of the unified efficiency in three areas. To promote the unified efficiency of industrial waste gas, some pertinent policy suggestions are put forward from the perspectives of sub-stages, air pollutants and areas.

Suggested Citation

  • Yanhong Tang & Yingwen Chen & Rui Yang & Xin Miao, 2020. "The Unified Efficiency Evaluation of China’s Industrial Waste Gas Considering Pollution Prevention and End-Of-Pipe Treatment," IJERPH, MDPI, vol. 17(16), pages 1-27, August.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:16:p:5724-:d:396106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/16/5724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/16/5724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Jie & Zhu, Qingyuan & Ji, Xiang & Chu, Junfei & Liang, Liang, 2016. "Two-stage network processes with shared resources and resources recovered from undesirable outputs," European Journal of Operational Research, Elsevier, vol. 251(1), pages 182-197.
    2. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    3. Jie Wu & Qingyuan Zhu & Junfei Chu & Liang Liang, 2015. "Two-Stage Network Structures with Undesirable Intermediate Outputs Reused: A DEA Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 455-477, October.
    4. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    5. Benjamin Hampf, 2014. "Separating environmental efficiency into production and abatement efficiency: a nonparametric model with application to US power plants," Journal of Productivity Analysis, Springer, vol. 41(3), pages 457-473, June.
    6. Thomas Sexton & Herbert Lewis, 2003. "Two-Stage DEA: An Application to Major League Baseball," Journal of Productivity Analysis, Springer, vol. 19(2), pages 227-249, April.
    7. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    8. Song, Malin & Zhu, Shuai & Wang, Jianlin & Zhao, Jiajia, 2020. "Share green growth: Regional evaluation of green output performance in China," International Journal of Production Economics, Elsevier, vol. 219(C), pages 152-163.
    9. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    10. Wang, H. & Ang, B.W. & Wang, Q.W. & Zhou, P., 2017. "Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach," Energy Economics, Elsevier, vol. 62(C), pages 70-78.
    11. Hampf, Benjamin, 2014. "Separating Environmental Efficiency into Production and Abatement Efficiency - A Nonparametric Model with Application to U.S. Power Plants," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 69997, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    13. Sueyoshi, Toshiyuki & Yuan, Yan, 2015. "China's regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution," Energy Economics, Elsevier, vol. 49(C), pages 239-256.
    14. Zhang, Bing & Bi, Jun & Fan, Ziying & Yuan, Zengwei & Ge, Junjie, 2008. "Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(1-2), pages 306-316, December.
    15. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    16. Mahmoudabadi, Mohammad Zarei & Azar, Adel & Emrouznejad, Ali, 2018. "A novel multilevel network slacks-based measure with an application in electric utility companies," Energy, Elsevier, vol. 158(C), pages 1120-1129.
    17. Shi, Guang-Ming & Bi, Jun & Wang, Jin-Nan, 2010. "Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs," Energy Policy, Elsevier, vol. 38(10), pages 6172-6179, October.
    18. Wang, Zihan & Li, Jiaxin & Liu, Jing & Shuai, Chuanmin, 2020. "Is the photovoltaic poverty alleviation project the best way for the poor to escape poverty? ——A DEA and GRA analysis of different projects in rural China," Energy Policy, Elsevier, vol. 137(C).
    19. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    20. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    21. Kao, Chiang & Liu, Shiang-Tai, 2019. "Cross efficiency measurement and decomposition in two basic network systems," Omega, Elsevier, vol. 83(C), pages 70-79.
    22. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    23. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    24. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    25. Jie Wu & Beibei Xiong & Qingxian An & Jiasen Sun & Huaqing Wu, 2017. "Total-factor energy efficiency evaluation of Chinese industry by using two-stage DEA model with shared inputs," Annals of Operations Research, Springer, vol. 255(1), pages 257-276, August.
    26. Hashemi, Seyed Hamid & Karimi, Amir & Tavana, Madjid, 2015. "An integrated green supplier selection approach with analytic network process and improved Grey relational analysis," International Journal of Production Economics, Elsevier, vol. 159(C), pages 178-191.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George & Tzeremes, Nickolaos, 2013. "An additive two-stage DEA approach creating sustainability efficiency indexes," MPRA Paper 44231, University Library of Munich, Germany.
    2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    3. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    4. Benjamin Hampf, 2018. "Measuring inefficiency in the presence of bad outputs: Does the disposability assumption matter?," Empirical Economics, Springer, vol. 54(1), pages 101-127, February.
    5. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    6. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    7. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    8. Amirteimoori, Alireza & Kazemi Matin, Reza & Yadollahi, Amir Hossein, 2024. "Stochastic resource reallocation in two-stage production processes with undesirable outputs: An empirical study on the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    9. Ke Wang & Yi-Ming Wei & Zhimin Huang, 2017. "Environmental efficiency and abatement efficiency measurements of China¡¯s thermal power industry: A data envelopment analysis based materials balance approach," CEEP-BIT Working Papers 108, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    10. Andreas Eder, 2022. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Journal of Productivity Analysis, Springer, vol. 57(2), pages 157-176, April.
    11. Andreas Eder, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Working Papers 752021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    12. repec:zbw:inwedp:752021 is not listed on IDEAS
    13. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    14. Cherchye, Laurens & Rock, Bram De & Walheer, Barnabé, 2015. "Multi-output efficiency with good and bad outputs," European Journal of Operational Research, Elsevier, vol. 240(3), pages 872-881.
    15. West, Steele, 2021. "The Estimation of Farm Business Inefficiency in the Presence of Debt Repayment," 2021 Conference, August 17-31, 2021, Virtual 315048, International Association of Agricultural Economists.
    16. Adler, Nicole & Volta, Nicola, 2016. "Accounting for externalities and disposability: A directional economic environmental distance function," European Journal of Operational Research, Elsevier, vol. 250(1), pages 314-327.
    17. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    18. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    19. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    20. Zhongfei Chen & Stavros Kourtzidis & Panayiotis Tzeremes & Nickolaos Tzeremes, 2022. "A robust network DEA model for sustainability assessment: an application to Chinese Provinces," Operational Research, Springer, vol. 22(1), pages 235-262, March.
    21. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:16:p:5724-:d:396106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.