IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i14p5246-d387338.html
   My bibliography  Save this article

Risk Interactions of Coronavirus Infection across Age Groups after the Peak of COVID-19 Epidemic

Author

Listed:
  • Xinhua Yu

    (Division of Epidemiology, Biostatistics & Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA)

Abstract

Background: The COVID-19 pandemic has incurred significant disease burden worldwide, particularly on the elderly population. This study aims to explore how risks of coronavirus infection interact across age groups using data from South Korea. Methods: Daily new COVID-19 cases from 10 March to 30 April 2020 were scraped from online open sources. A multivariate vector autoregressive model for time series of count data was used to examine the risk interactions across age groups. Case counts from previous days were included as predictors to dynamically examine the change of risk patterns. Results: In South Korea, the risk of coronavirus infection among elderly people was significantly affected by other age groups. An increase in virus infection among people aged 20–39 was associated with a double risk of infection among elderly people. Meanwhile, an increase in virus infection among elderly people was also significantly associated with risks of infection among other age groups. The risks of infection among younger people were relatively unaffected by that of other age groups. Conclusions: Protecting elderly people from coronavirus infection could not only reduce the risk of infection among themselves but also ameliorate the risks of virus infection among other age groups. Such interventions should be effective and for the long term.

Suggested Citation

  • Xinhua Yu, 2020. "Risk Interactions of Coronavirus Infection across Age Groups after the Peak of COVID-19 Epidemic," IJERPH, MDPI, vol. 17(14), pages 1-14, July.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:14:p:5246-:d:387338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/14/5246/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/14/5246/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hilbe,Joseph M., 2014. "Modeling Count Data," Cambridge Books, Cambridge University Press, number 9781107611252, January.
    2. Brandt, Patrick T. & Sandler, Todd, 2012. "A Bayesian Poisson Vector Autoregression Model," Political Analysis, Cambridge University Press, vol. 20(3), pages 292-315, July.
    3. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    4. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Congdon, 2022. "A spatio-temporal autoregressive model for monitoring and predicting COVID infection rates," Journal of Geographical Systems, Springer, vol. 24(4), pages 583-610, October.
    2. Calvin Lukas Kienbacher & Joshua Ray Tanzer & Guixing Wei & Jason M. Rhodes & Dominik Roth & Kenneth Alan Williams, 2022. "Increases in Ambulance Call Volume Are an Early Warning Sign of Major COVID-19 Surges in Children," IJERPH, MDPI, vol. 19(23), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    2. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    3. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    4. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    5. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    6. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    7. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    8. Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
    9. Xiao Yang & Nilam Ram & Scott D. Gest & David M. Lydon-Staley & David E. Conroy & Aaron L. Pincus & Peter C. M. Molenaar, 2018. "Socioemotional Dynamics of Emotion Regulation and Depressive Symptoms: A Person-Specific Network Approach," Complexity, Hindawi, vol. 2018, pages 1-14, November.
    10. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    11. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    12. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    13. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    14. Wu, Jiang & Ou, Guiyan & Liu, Xiaohui & Dong, Ke, 2022. "How does academic education background affect top researchers’ performance? Evidence from the field of artificial intelligence," Journal of Informetrics, Elsevier, vol. 16(2).
    15. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    16. S. M. Niaz Arifin & Christoph Zimmer & Caroline Trotter & Anaïs Colombini & Fati Sidikou & F. Marc LaForce & Ted Cohen & Reza Yaesoubi, 2019. "Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study," Medical Decision Making, , vol. 39(5), pages 553-567, July.
    17. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    18. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    19. Deniz Aksoy & David Carlson, 2022. "Electoral support and militants’ targeting strategies," Journal of Peace Research, Peace Research Institute Oslo, vol. 59(2), pages 229-241, March.
    20. Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:14:p:5246-:d:387338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.