IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i10p3535-d359842.html
   My bibliography  Save this article

SEIR Modeling of the Italian Epidemic of SARS-CoV-2 Using Computational Swarm Intelligence

Author

Listed:
  • Alberto Godio

    (Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Francesca Pace

    (Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Andrea Vergnano

    (Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract

We applied a generalized SEIR epidemiological model to the recent SARS-CoV-2 outbreak in the world, with a focus on Italy and its Lombardy, Piedmont, and Veneto regions. We focused on the application of a stochastic approach in fitting the model parameters using a Particle Swarm Optimization (PSO) solver, to improve the reliability of predictions in the medium term (30 days). We analyzed the official data and the predicted evolution of the epidemic in the Italian regions, and we compared the results with the data and predictions of Spain and South Korea. We linked the model equations to the changes in people’s mobility, with reference to Google’s COVID-19 Community Mobility Reports. We discussed the effectiveness of policies taken by different regions and countries and how they have an impact on past and future infection scenarios.

Suggested Citation

  • Alberto Godio & Francesca Pace & Andrea Vergnano, 2020. "SEIR Modeling of the Italian Epidemic of SARS-CoV-2 Using Computational Swarm Intelligence," IJERPH, MDPI, vol. 17(10), pages 1-19, May.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:10:p:3535-:d:359842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/10/3535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/10/3535/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amin Eshkiti & Fatemeh Sabouhi & Ali Bozorgi-Amiri, 2023. "A data-driven optimization model to response to COVID-19 pandemic: a case study," Annals of Operations Research, Springer, vol. 328(1), pages 337-386, September.
    2. Zhou, Xin & Liao, Wenzhu, 2023. "Research on demand forecasting and distribution of emergency medical supplies using an agent-based model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Giovanni Dieguez & Cristiane Batistela & José R. C. Piqueira, 2023. "Controlling COVID-19 Spreading: A Three-Level Algorithm," Mathematics, MDPI, vol. 11(17), pages 1-39, September.
    4. Yas Al-Hadeethi & Intesar F. El Ramley & Hiba Mohammed & Abeer Z. Barasheed, 2023. "A New Polymorphic Comprehensive Model for COVID-19 Transition Cycle Dynamics with Extended Feed Streams to Symptomatic and Asymptomatic Infections," Mathematics, MDPI, vol. 11(5), pages 1-27, February.
    5. Anil Babu Payedimarri & Diego Concina & Luigi Portinale & Massimo Canonico & Deborah Seys & Kris Vanhaecht & Massimiliano Panella, 2021. "Prediction Models for Public Health Containment Measures on COVID-19 Using Artificial Intelligence and Machine Learning: A Systematic Review," IJERPH, MDPI, vol. 18(9), pages 1-11, April.
    6. Lei Zhang & Guang-Hui She & Yu-Rong She & Rong Li & Zhen-Su She, 2022. "Quantifying Social Interventions for Combating COVID-19 via a Symmetry-Based Model," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    7. Kai Yin & Anirban Mondal & Martial Ndeffo-Mbah & Paromita Banerjee & Qimin Huang & David Gurarie, 2022. "Bayesian Inference for COVID-19 Transmission Dynamics in India Using a Modified SEIR Model," Mathematics, MDPI, vol. 10(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:10:p:3535-:d:359842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.