IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i9p1503-d226610.html
   My bibliography  Save this article

Effectiveness Analysis of Systematic Combined Sewer Overflow Control Schemes in the Sponge City Pilot Area of Beijing

Author

Listed:
  • Yongwei Gong

    (Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Ye Chen

    (Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Lei Yu

    (Beijing Water Science and Technology Institute, Beijing 100048, China)

  • Junqi Li

    (Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Xingyao Pan

    (Beijing Water Science and Technology Institute, Beijing 100048, China)

  • Zhenyao Shen

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Xiang Xu

    (Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Qianying Qiu

    (Beijing Water Science and Technology Institute, Beijing 100048, China)

Abstract

Combined sewer overflow (CSO) pollution poses a serious threat to the urban water environment and is more severe in old urban areas. This research uses the old urban area in the sponge city pilot area in Tongzhou District, Beijing, as the study area. The United States Environmental Protection Agency (USEPA) storm water management model (SWMM) was used to establish the hydrologic and hydraulic model of this area. The model parameters were calibrated and validated based on the measured rainfall and runoff data. The results show that the Nash-Sutcliffe efficiency coefficient for calibration and validation is more than 0.74. Thirty-two sets of systematic CSO control schemes are formulated, which include the "gray (includes the pipes, pumps, ditches, and detention ponds engineered by people to manage stormwater) strategy" and "gray-green strategies", and the regularity of CSO control for "low impact development (LID) facilities at the source", "intercepting sewer pipes at the midway", and "storage tank at the end", are quantitatively analyzed. The results show that the LID facility has an average annual reduction rate of 22% for the CSO frequency and 35% to 49% for the CSO volume. The retrofitting of intercepting sewer pipes has an average annual reduction rate of 11% for the CSO frequency and 4% to 15% for the CSO volume, and the storage tank has an average annual reduction rate from 3% to 36% for the CSO volume; furthermore, the reduction rate decreases with the increase in the CSO volume reduction rate by LID facilities. When the CSO control target is stricter, the control effect of the "end" segment is more obvious, but the control efficiency is lower. By studying the variability of the storage tank volume under different control targets, it can be concluded that it is reasonable to set the CSO control target because the number of overflow events does not exceed four times per year for the study area.

Suggested Citation

  • Yongwei Gong & Ye Chen & Lei Yu & Junqi Li & Xingyao Pan & Zhenyao Shen & Xiang Xu & Qianying Qiu, 2019. "Effectiveness Analysis of Systematic Combined Sewer Overflow Control Schemes in the Sponge City Pilot Area of Beijing," IJERPH, MDPI, vol. 16(9), pages 1-18, April.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:9:p:1503-:d:226610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/9/1503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/9/1503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria R. C. De Sousa & Franco A. Montalto & Sabrina Spatari, 2012. "Using Life Cycle Assessment to Evaluate Green and Grey Combined Sewer Overflow Control Strategies," Journal of Industrial Ecology, Yale University, vol. 16(6), pages 901-913, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kavehei, Emad & Jenkins, G.A. & Adame, M.F. & Lemckert, C., 2018. "Carbon sequestration potential for mitigating the carbon footprint of green stormwater infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1179-1191.
    2. Jonas Smit Andersen & Sara Maria Lerer & Antje Backhaus & Marina Bergen Jensen & Hjalte Jomo Danielsen Sørup, 2017. "Characteristic Rain Events: A Methodology for Improving the Amenity Value of Stormwater Control Measures," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    3. Liu, Jiahong & Wang, Jia & Ding, Xiangyi & Shao, Weiwei & Mei, Chao & Li, Zejin & Wang, Kaibo, 2020. "Assessing the mitigation of greenhouse gas emissions from a green infrastructure-based urban drainage system," Applied Energy, Elsevier, vol. 278(C).
    4. Herath Mudiyanselage Malhamige Sonali Dinesha Herath & Takeshi Fujino & Mudalige Don Hiranya Jayasanka Senavirathna, 2023. "A Review of Emerging Scientific Discussions on Green Infrastructure (GI)-Prospects towards Effective Use of Urban Flood Plains," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    5. Charlesworth, S.M. & Faraj-Llyod, A.S. & Coupe, S.J., 2017. "Renewable energy combined with sustainable drainage: Ground source heat and pervious paving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 912-919.
    6. Zhongming Lu & John Crittenden & Frank Southworth & Ellen Dunham-Jones, 2017. "An integrated framework for managing the complex interdependence between infrastructures and the socioeconomic environment: An application in metropolitan Atlanta," Urban Studies, Urban Studies Journal Limited, vol. 54(12), pages 2874-2893, September.
    7. Maragno, Denis & Gaglio, Mattias & Robbi, Martina & Appiotti, Federica & Fano, Elisa Anna & Gissi, Elena, 2018. "Fine-scale analysis of urban flooding reduction from green infrastructure: An ecosystem services approach for the management of water flows," Ecological Modelling, Elsevier, vol. 386(C), pages 1-10.
    8. Venkatesh, G. & Chan, Arthur & Brattebø, Helge, 2014. "Understanding the water-energy-carbon nexus in urban water utilities: Comparison of four city case studies and the relevant influencing factors," Energy, Elsevier, vol. 75(C), pages 153-166.
    9. Pyrène Larrey-Lassalle & Stéphanie Armand Decker & Domenico Perfido & Serkan Naneci & Benedetto Rugani, 2022. "Life Cycle Assessment Applied to Nature-Based Solutions: Learnings, Methodological Challenges, and Perspectives from a Critical Analysis of the Literature," Land, MDPI, vol. 11(5), pages 1-22, April.
    10. Lisa A. Peterson & Patricia M. Awerbuch & Sabrina Spatari, 2021. "Environmental and economic implications of stormwater management alternatives in rural development," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1076-1088, August.
    11. J. Cherrier & Y. Klein & H. Link & J. Pillich & N. Yonzan, 2016. "Hybrid green infrastructure for reducing demands on urban water and energy systems: a New York City hypothetical case study," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 77-89, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:9:p:1503-:d:226610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.