IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i5p800-d211062.html
   My bibliography  Save this article

Coupling Computational Fluid Dynamics Simulations and Statistical Moments for Designing Healthy Indoor Spaces

Author

Listed:
  • Shamia Hoque

    (Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA)

  • Firoza B. Omar

    (Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA)

Abstract

Cross-contamination between occupants in an indoor space may occur due to transfer of infectious aerosols. Computational fluid dynamics (CFD) provides detailed insight into particle transport in indoor spaces. However, such simulations are site-specific. This study couples CFD with statistical moments and establishes a framework that transitions site-specific results to generating guidelines for designing “healthy” indoor spaces. Eighteen cases were simulated, and three parameters were assessed: inlet/outlet location, air changes per hour, and the presence/absence of desks. Aerosol release due to a simulated “sneeze” in a two-dimensional ventilated space was applied as a test case. Mean, standard deviation, and skewness of the velocity profiles and particle locations gave an overall picture of the spread and movement of the air flow in the domain. A parameter or configuration did not dominate the values, confirming the significance of considering the combined influence of multiple parameters for determining localized air-flow characteristics. Particle clustering occurred more when the inlet was positioned above the outlet. The particle dispersion pattern could be classified into two time zones: “near time”, <60 s, and “far time”, >120 s. Based on dosage, the 18 cases were classified into three groups ranging from worst case scenario to best case scenario.

Suggested Citation

  • Shamia Hoque & Firoza B. Omar, 2019. "Coupling Computational Fluid Dynamics Simulations and Statistical Moments for Designing Healthy Indoor Spaces," IJERPH, MDPI, vol. 16(5), pages 1-16, March.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:800-:d:211062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/5/800/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/5/800/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:800-:d:211062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.