IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i3p330-d200697.html
   My bibliography  Save this article

Grazing Altered the Pattern of Woody Plants and Shrub Encroachment in a Temperate Savanna Ecosystem

Author

Listed:
  • Zhiyong Zhang

    (Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
    Research Institute of Forestry Policy and Information, Chinese Academy of Forestry, Beijing 100091, China)

  • Bo Zhang

    (Beijing Station of the Forestry Science and Technology Extension, Beijing 100029, China)

  • Xiao Zhang

    (Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China)

  • Xiaohui Yang

    (Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China)

  • Zhongjie Shi

    (Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China)

  • Yanshu Liu

    (Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China)

Abstract

Ulmus pumila -dominated temperate savanna is an important tree-grass complex ecosystem in the Otindag sand land, northern China. To date, few investigations have been undertaken on the spatial patterns and structure of this ecosystem and its driving factors under different grazing pressures. The objective of our study therefore is to explore whether grazing has affected the population structure/pattern of woody plants and shrub encroachment in a temperate savanna ecosystem. Results indicate that species richness and seedlings decreased with increasing grazing pressure. An increase in grazing pressure did not significantly affect adult-tree density, but it hindered the normal regeneration of U. pumila seedlings, further inducing population decline. U. pumila seedlings had a more significant aggregated distribution than juvenile or adult trees. The adult and juvenile trees had an aggregated distribution at the small scale and a random distribution at the large scale. Shrubs also showed a significant aggregated distribution. No clear effect on the spatial patterns of adult trees was observed; however, there was a noticeable effect for juveniles and seedlings under different grazing pressures. U. pumila seedlings had a positive association with their juveniles and Spiraea aquilegifolia, but a negative association with Caragana microphylla . Shrub encroachment occurred with decreasing grazing pressures. In conclusion, overgrazing led to the decline of U. pumila population, but the decrease in grazing pressure increased shrub encroachment in the temperate savanna ecosystem. Moderate grazing management may be a better way to enhance the stability of U. pumila population and reduce shrub encroachment.

Suggested Citation

  • Zhiyong Zhang & Bo Zhang & Xiao Zhang & Xiaohui Yang & Zhongjie Shi & Yanshu Liu, 2019. "Grazing Altered the Pattern of Woody Plants and Shrub Encroachment in a Temperate Savanna Ecosystem," IJERPH, MDPI, vol. 16(3), pages 1-18, January.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:330-:d:200697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/3/330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/3/330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao Wang & Bo Zhang & Kebin Zhang & Jinxing Zhou & Bilal Ahmad, 2015. "The Spatial Pattern and Interactions of Woody Plants on the Temperate Savanna of Inner Mongolia, China: The Effects of Alternating Seasonal Grazing-Mowing Regimes," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
    2. Robert B. Jackson & Jay L. Banner & Esteban G. Jobbágy & William T. Pockman & Diana H. Wall, 2002. "Ecosystem carbon loss with woody plant invasion of grasslands," Nature, Nature, vol. 418(6898), pages 623-626, August.
    3. Bo Wu & Hongxiao Yang, 2013. "Spatial Patterns and Natural Recruitment of Native Shrubs in a Semi-arid Sandy Land," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiankang Liu & Kebin Zhang, 2018. "Spatial Pattern and Population Structure of Artemisia ordosica Shrub in a Desert Grassland under Enclosure, Northwest China," IJERPH, MDPI, vol. 15(5), pages 1-18, May.
    2. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    3. Ondřej HOLUBÍK & Vilém PODRÁZSKÝ & Jan VOPRAVIL & Tomáš KHEL & Jiří REMEŠ, 2014. "Effect of agricultural lands afforestation and tree species composition on the soil reaction, total organic carbon and nitrogen content in the uppermost mineral soil profile," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(4), pages 192-200.
    4. Naveed Alam & Eve Bohnett & Muhammad Zafar & Hassan Sher & Bilal Ahmad & Mohamed Fawzy Ramadan & Mushtaq Ahmad & Zahid Ullah & Ahmad Ali & Shujaul Mulk Khan & Kashmala Syed, 2023. "Impact of Anthropogenic Threats on Species Diversity: A Case Study of the Sub-Himalayan Tropical Dry Deciduous Forests of Pakistan," Sustainability, MDPI, vol. 15(3), pages 1-15, February.
    5. Jan J Quets & Stijn Temmerman & Magdy I El-Bana & Saud L Al-Rowaily & Abdulaziz M Assaeed & Ivan Nijs, 2014. "Use of Spatial Analysis to Test Hypotheses on Plant Recruitment in a Hyper-Arid Ecosystem," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    6. Adhikari, Arjun & White, Joseph D., 2016. "Climate change impacts on regenerating shrubland productivity," Ecological Modelling, Elsevier, vol. 337(C), pages 211-220.
    7. Li, N. & Yan, C.Z. & Xie, J.L., 2015. "Remote sensing monitoring recent rapid increase of coal mining activity of an important energy base in northern China, a case study of Mu Us Sandy Land," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 129-135.
    8. Linhe Chen & Yanhong Hang & Quanfeng Li, 2023. "Spatial-Temporal Characteristics and Influencing Factors of Carbon Emissions from Land Use and Land Cover in Black Soil Region of Northeast China Based on LMDI Simulation," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    9. Li Gao & Xin Wen & Yuntong Guo & Tianming Gao & Yi Wang & Lei Shen, 2014. "Spatiotemporal Variability of Carbon Flux from Different Land Use and Land Cover Changes: A Case Study in Hubei Province, China," Energies, MDPI, vol. 7(4), pages 1-19, April.
    10. Rodolfo Picchio & Farzam Tavankar & Hamid Rafie & Aezam Rezae Kivi & Meghdad Jourgholami & Angela Lo Monaco, 2022. "Carbon Storage in Biomass and Soil after Mountain Landscape Restoration: Pinus nigra and Picea abies Plantations in the Hyrcanian Region," Land, MDPI, vol. 11(3), pages 1-15, March.
    11. Olenick, Keith L. & Kreuter, Urs P. & Conner, J. Richard, 2005. "Texas landowner perceptions regarding ecosystem services and cost-sharing land management programs," Ecological Economics, Elsevier, vol. 53(2), pages 247-260, April.
    12. Lina Jiang & Xiao Wang & Long Li & Zhongjie Shi & Xiaohui Yang, 2017. "Spatial Association of Shrubs and Their Interrelation to Burrowing Site Preference of Subterranean Rodents on Dune Slope in the Otindag Sandy Land, China," Sustainability, MDPI, vol. 9(10), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:330-:d:200697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.