IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i24p5143-d298598.html
   My bibliography  Save this article

Numerical Simulation of Flow and Temperature Fields in a Deep Stratified Reservoir Using Water-Separating Curtain

Author

Listed:
  • Lifang Zhang

    (State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China)

  • Jianmin Zhang

    (State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China)

  • Yong Peng

    (State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China)

  • Jiangyang Pan

    (Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China)

  • Zhongxian Peng

    (Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China)

Abstract

In this work, the flow and temperature fields of a thermally stratified reservoir under different settings of a water-separating curtain are simulated by using the standard k-ε turbulence model. In the simulation, two different equations of state including Boussinesq approximation and the density-temperature function have been used and compared. This study shows that Boussinesq approximation is more time-saving, and the density-temperature function has higher computational accuracy. Thus, the standard k-ε turbulence model with two equations of state is applied to study the effect of adding a water-separating curtain in the stratified reservoir on the Discharged Water Temperature (DWT). It is found that adding the Water-Separating Curtain (WSC) can effectively increase the discharged water temperature. Moreover, the different arrangements of WSC have obvious effects on the discharged water temperature. For example, the increased temperature by adding a WSC with full sealing is 1 °C higher than that by using the WSC with a bottom opening height of 2 m. However, the maximum pressure difference acting on the WSC for the former WSC is 100 Pa higher than that for the latter WSC. In addition, this study shows that the different equations of state have little effect on the simulation results. Considering the calculation efficiency, equations of state using the Boussinesq approximation can be recommended to save the calculation time.

Suggested Citation

  • Lifang Zhang & Jianmin Zhang & Yong Peng & Jiangyang Pan & Zhongxian Peng, 2019. "Numerical Simulation of Flow and Temperature Fields in a Deep Stratified Reservoir Using Water-Separating Curtain," IJERPH, MDPI, vol. 16(24), pages 1-16, December.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:24:p:5143-:d:298598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/24/5143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/24/5143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Politano, Marcela & Haque, MD.M. & Weber, Larry J., 2008. "A numerical study of the temperature dynamics at McNary Dam," Ecological Modelling, Elsevier, vol. 212(3), pages 408-421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Qianfeng & Li, Kefeng & Wang, Yuanming & Feng, Jingjie & Li, Ran & Liang, Ruifeng, 2022. "Effect of floating photovoltaic system on water temperature of deep reservoir and assessment of its potential benefits, a case on Xiangjiaba Reservoir with hydropower station," Renewable Energy, Elsevier, vol. 195(C), pages 946-956.
    2. He, Wei & Zhang, Xufan & Zhang, Jian & Xu, Hui & Zhou, Hongxing, 2023. "Regulating outflow temperature for multi-objective operation of cascade reservoirs: A case study," Renewable Energy, Elsevier, vol. 211(C), pages 155-165.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunxi Liu & Jijian Lian & Haijun Wang, 2022. "Experimental Analysis of Temperature-Control Curtain Regulating Outflow Temperature in a Thermal-Stratified Reservoir," IJERPH, MDPI, vol. 19(15), pages 1-18, August.
    2. Lindim, C. & Pinho, J.L. & Vieira, J.M.P., 2011. "Analysis of spatial and temporal patterns in a large reservoir using water quality and hydrodynamic modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2485-2494.
    3. Arenas, Antonio & Politano, Marcela & Weber, Larry & Timko, Mark, 2015. "Analysis of movements and behavior of smolts swimming in hydropower reservoirs," Ecological Modelling, Elsevier, vol. 312(C), pages 292-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:24:p:5143-:d:298598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.