Author
Listed:
- Laurens Holmes
(Nemours/A.I. DuPont Children’s Hospital, Nemours Office of Health Equity & Inclusion, 2200 Concord Pike, 7th Floor, Wilmington, DE 19803, USA
Biological Sciences Department, University of Delaware, Newark, DE 19711, USA)
- Andrew Lim
(Nemours/A.I. DuPont Children’s Hospital, Nemours Office of Health Equity & Inclusion, 2200 Concord Pike, 7th Floor, Wilmington, DE 19803, USA)
- Camillia R. Comeaux
(Nemours/A.I. DuPont Children’s Hospital, Nemours Office of Health Equity & Inclusion, 2200 Concord Pike, 7th Floor, Wilmington, DE 19803, USA
Institute of Public Health, Florida A&M University, Tallahassee, FL 32301, USA)
- Kirk W. Dabney
(Nemours/A.I. DuPont Children’s Hospital, Nemours Office of Health Equity & Inclusion, 2200 Concord Pike, 7th Floor, Wilmington, DE 19803, USA)
- Osatohamwen Okundaye
(Nemours/A.I. DuPont Children’s Hospital, Nemours Office of Health Equity & Inclusion, 2200 Concord Pike, 7th Floor, Wilmington, DE 19803, USA)
Abstract
Physical, chemical, and social environments adversely affect the molecular process and results in cell signal transduction and the subsequent transcription factor dysregulation, leading to impaired gene expression and abnormal protein synthesis. Stressful environments such as social adversity, isolation, sustained social threats, physical inactivity, and highly methylated diets predispose individuals to molecular level alterations such as aberrant epigenomic modulations that affect homeostasis and hemodynamics. With cardiovascular disease as the leading cause of mortality in the US and blacks/African Americans being disproportionately affected by hypertension (HTN) which contributes substantially to these deaths, reflecting the excess mortality and survival disadvantage of this sub-population relative to whites, understanding the molecular events, including epigenomic and socio-epigenomic modulations, is relevant to narrowing the black-white mortality risk differences. We aimed to synthesize epigenomic findings in HTN namely (a) angiotensin-converting enzyme 2 (ACE II) gene, (b) Toll-like receptor 2 (TLR2) gene, (c) interferon γ (IFN-γ) gene, and (d) Capping Actin Protein, Gelosin-Like ( CAPG ) gene , adducin 1(ADD1) gene, (e) Tissue inhibitor of metalloproteinase 3 ( TIMP3 ), (f) mesoderm specific transcript (MEST) loci, (g) sodium channel epithelial 1 alpha subunit 2 (SCNN1B), (h) glucokinase (CKG) gene (i) angiotensin II receptor, type1 (AGTR1), and DNA methylation (mDNA). A systematic review and quantitative evidence synthesis (QES) was conducted using Google Scholar and PubMed with relevant search terms. Data were extracted from studies on: (a) Epigenomic modulations in HTN based on ACE II (b) TLR2, (c) IFN-γ gene, (d) CAPG , ADD1, TIMP3 , MEST loci, and mDNA. The random-effect meta-analysis method was used for a pooled estimate of the common effect size, while z statistic and I^2 were used for the homogeneity of the common effect size and between studies on heterogeneity respectively. Of the 642 studies identified, five examined hypermethylation while seven studies assessed hypomethylation in association with HTN. The hypermethylation of ACE II, SCNN1B, CKG, IFN-γ gene, and miR-510 promoter were associated with hypertension, the common effect size (CES) = 6.0%, 95% CI, −0.002–11.26. In addition, the hypomethylation of TLR2, IFN-γ gene, ADD1, AGTR1, and GCK correlated with hypertension, the CES = 2.3%, 95% CI, −2.51–7.07. The aberrant epigenomic modulation of ACE II, TLR2, IFN-γ, AGTR1, and GCK correlated with essential HTN. Transforming the environments resulting from these epigenomic lesions will facilitate early intervention mapping in reducing HTN in the US population, especially among socially disadvantaged individuals, particularly racial/ethnic minorities.
Suggested Citation
Laurens Holmes & Andrew Lim & Camillia R. Comeaux & Kirk W. Dabney & Osatohamwen Okundaye, 2019.
"DNA Methylation of Candidate Genes (ACE II, IFN-γ, AGTR 1, CKG, ADD1, SCNN1B and TLR2) in Essential Hypertension: A Systematic Review and Quantitative Evidence Synthesis,"
IJERPH, MDPI, vol. 16(23), pages 1-15, December.
Handle:
RePEc:gam:jijerp:v:16:y:2019:i:23:p:4829-:d:292827
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:23:p:4829-:d:292827. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.