IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i21p4095-d279775.html
   My bibliography  Save this article

Effects of Vegetable Fields on the Spatial Distribution Patterns of Metal(loid)s in Soils Based on GIS and Moran’s I

Author

Listed:
  • Qiang Wang

    (School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China)

  • Shanlian Yang

    (School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China)

  • Menglei Zheng

    (School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China)

  • Fengxiang Han

    (Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39056, USA)

  • Youhua Ma

    (Institute for New Rural Development, Anhui Agricultural University, Hefei 230036, China)

Abstract

Metal(loid) pollution in vegetable field soils has become increasingly severe and affects the safety of vegetable crops. Research in China has mainly focused on greenhouse vegetables (GV), while open field vegetables (OV) and the spatial distribution patterns of metal(loid)s in the surrounding soils have rarely been assessed. In the present study, spatial analysis methods combining Geographic Information Systems (GIS) and Moran’s I were applied to analyze the effects of vegetable fields on metal(loid) accumulation in soils. Overall, vegetable fields affected the spatial distribution of metal(loid)s in soils. In long-term vegetable production, the use of large amounts of organic fertilizer led to the bioconcentration of cadmium (Cd) and mercury (Hg), and long-term fertilization resulted in a significant pH decrease and consequent transformation and migration of chromium (Cr), lead (Pb), and arsenic (As). Thus, OV fields with a long history of planting had lower average pH and Cd, and higher average As, Cr, Hg, and Pb than GV fields, reached 0.93%, 10.1%, 5.8%, 3.0%, 80.8%, and 0.43% respectively. Due to the migration and transformation of metal(loid)s in OV soils, these should be further investigated regarding their abilities to reduce the accumulation of metal(loid)s in soils and protect the quality of the cultivated land.

Suggested Citation

  • Qiang Wang & Shanlian Yang & Menglei Zheng & Fengxiang Han & Youhua Ma, 2019. "Effects of Vegetable Fields on the Spatial Distribution Patterns of Metal(loid)s in Soils Based on GIS and Moran’s I," IJERPH, MDPI, vol. 16(21), pages 1-20, October.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:21:p:4095-:d:279775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/21/4095/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/21/4095/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barry Boots & Michael Tiefelsdorf, 2000. "Global and local spatial autocorrelation in bounded regular tessellations," Journal of Geographical Systems, Springer, vol. 2(4), pages 319-348, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    2. Qing Luo & Daniel A. Griffith & Huayi Wu, 2019. "Spatial autocorrelation for massive spatial data: verification of efficiency and statistical power asymptotics," Journal of Geographical Systems, Springer, vol. 21(2), pages 237-269, June.
    3. Dusan Paredes & Marcelo Lufin & Patricio Aroca, 2012. "The Estimation of Urban Premium Wage Using Propensity Score Analysis: Some Considerations from the Spatial Perspective," Advances in Spatial Science, in: Esteban Fernández Vázquez & Fernando Rubiera Morollón (ed.), Defining the Spatial Scale in Modern Regional Analysis, edition 127, chapter 0, pages 215-236, Springer.
    4. Fen-Jiao Wang & Chang-Lin Mei & Zhi Zhang & Qiu-Xia Xu, 2022. "Testing for Local Spatial Association Based on Geographically Weighted Interpolation of Geostatistical Data with Application to PM2.5 Concentration Analysis," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    5. Moniruzzaman, Md & Páez, Antonio, 2012. "Accessibility to transit, by transit, and mode share: application of a logistic model with spatial filters," Journal of Transport Geography, Elsevier, vol. 24(C), pages 198-205.
    6. Julie Le Gallo & Antonio Páez, 2013. "Using Synthetic Variables in Instrumental Variable Estimation of Spatial Series Models," Environment and Planning A, , vol. 45(9), pages 2227-2242, September.
    7. Michael Tiefelsdorf & Daniel A Griffith, 2007. "Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach," Environment and Planning A, , vol. 39(5), pages 1193-1221, May.
    8. Hankach, Pierre & Gastineau, Pascal & Vandanjon, Pierre-Olivier, 2022. "Multi-scale spatial analysis of household car ownership using distance-based Moran's eigenvector maps: Case study in Loire-Atlantique (France)," Journal of Transport Geography, Elsevier, vol. 98(C).
    9. Cupido, Kyran & Jevtić, Petar & Paez, Antonio, 2020. "Spatial patterns of mortality in the United States: A spatial filtering approach," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 28-38.
    10. Min Xu & Chang-Lin Mei & Na Yan, 2014. "A note on the null distribution of the local spatial heteroscedasticity (LOSH) statistic," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(3), pages 697-710, May.
    11. Bernard Fingleton, 2023. "Estimating dynamic spatial panel data models with endogenous regressors using synthetic instruments," Journal of Geographical Systems, Springer, vol. 25(1), pages 121-152, January.
    12. Moraga, J. & Duzgun, H.S. & Cavur, M. & Soydan, H., 2022. "The Geothermal Artificial Intelligence for geothermal exploration," Renewable Energy, Elsevier, vol. 192(C), pages 134-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:21:p:4095-:d:279775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.