IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i19p3753-d273658.html
   My bibliography  Save this article

Contamination by Antibiotic-Resistant Bacteria in Selected Environments in Thailand

Author

Listed:
  • Visanu Thamlikitkul

    (Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand)

  • Surapee Tiengrim

    (Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand)

  • Narisara Thamthaweechok

    (Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand)

  • Preeyanuch Buranapakdee

    (Bureau of Environmental Health, Department of Health, Ministry of Public Health, Nonthaburi 11000, Thailand)

  • Wilai Chiemchaisri

    (Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand)

Abstract

This study determined the presence of important antibiotic-resistant bacteria in selected environments in Thailand, including wastewater samples from 60 hospitals; washed fluid, leachate, flies, cockroaches, and rats collected from five open markets; washed fluid from garbage trucks; and stabilized leachate from a landfill facility. At least one type of antibiotic-resistant bacteria was isolated from all samples of influent fluid before treatment in hospitals, from wastewater treatment tank content in hospitals, and from 15% of effluent fluid samples after treatment with chlorine prior to draining it into a public water source. Antibiotic-resistant bacteria were recovered from 80% of washed market fluid samples, 60% of market leachate samples, all fly samples, 80% of cockroach samples, and all samples of intestinal content of rats collected from the open markets. Antibiotic-resistant bacteria were recovered from all samples from the landfill. Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and/or Klebsiella pneumoniae were the most common antibiotic-resistant bacteria recovered from all types of samples, followed by carbapenem-resistant E. coli and/or K. pneumoniae. Colistin-resistant Enterobacteriaceae, carbapenem-resistant Psuedomonas aeruginosa , carbapenem-resistant Acinetobacter baumannii , colistin-resistant Enterobacteriaceae, vancomycin-resistant Enterococci , and methicillin-resistant S. aureus were less common. These findings suggest extensive contamination by antibiotic-resistant bacteria in hospital and community environment in Thailand.

Suggested Citation

  • Visanu Thamlikitkul & Surapee Tiengrim & Narisara Thamthaweechok & Preeyanuch Buranapakdee & Wilai Chiemchaisri, 2019. "Contamination by Antibiotic-Resistant Bacteria in Selected Environments in Thailand," IJERPH, MDPI, vol. 16(19), pages 1-11, October.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:19:p:3753-:d:273658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/19/3753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/19/3753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rene S. Hendriksen & Patrick Munk & Patrick Njage & Bram Bunnik & Luke McNally & Oksana Lukjancenko & Timo Röder & David Nieuwenhuijse & Susanne Karlsmose Pedersen & Jette Kjeldgaard & Rolf S. Kaas & , 2019. "Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Munk & Christian Brinch & Frederik Duus Møller & Thomas N. Petersen & Rene S. Hendriksen & Anne Mette Seyfarth & Jette S. Kjeldgaard & Christina Aaby Svendsen & Bram Bunnik & Fanny Berglund & , 2022. "Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Andrea Butcher & Jose A. Cañada & Salla Sariola, 2021. "How to make noncoherent problems more productive: Towards an AMR management plan for low resource livestock sectors," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-10, December.
    3. Qi Dang & Wei Zhang & Jiqing Liu & Liting Wang & Deli Wu & Dejin Wang & Zhendong Lei & Liang Tang, 2023. "Bias-free driven ion assisted photoelectrochemical system for sustainable wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Kihyun Lee & Sebastien Raguideau & Kimmo Sirén & Francesco Asnicar & Fabio Cumbo & Falk Hildebrand & Nicola Segata & Chang-Jun Cha & Christopher Quince, 2023. "Population-level impacts of antibiotic usage on the human gut microbiome," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Ágnes Becsei & Alessandro Fuschi & Saria Otani & Ravi Kant & Ilja Weinstein & Patricia Alba & József Stéger & Dávid Visontai & Christian Brinch & Miranda Graaf & Claudia M. E. Schapendonk & Antonio Ba, 2024. "Time-series sewage metagenomics distinguishes seasonal, human-derived and environmental microbial communities potentially allowing source-attributed surveillance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Zhenyan Zhang & Qi Zhang & Tingzhang Wang & Nuohan Xu & Tao Lu & Wenjie Hong & Josep Penuelas & Michael Gillings & Meixia Wang & Wenwen Gao & Haifeng Qian, 2022. "Assessment of global health risk of antibiotic resistance genes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Aguiar, Raphael & Keil, Roger & Wiktorowicz, Mary, 2024. "The urban political ecology of antimicrobial resistance: A critical lens on integrative governance," Social Science & Medicine, Elsevier, vol. 348(C).
    8. Peter J. Diebold & Matthew W. Rhee & Qiaojuan Shi & Nguyen Vinh Trung & Fayaz Umrani & Sheraz Ahmed & Vandana Kulkarni & Prasad Deshpande & Mallika Alexander & Ngo Hoa & Nicholas A. Christakis & Najee, 2023. "Clinically relevant antibiotic resistance genes are linked to a limited set of taxa within gut microbiome worldwide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:19:p:3753-:d:273658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.