IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i9p1925-d167733.html
   My bibliography  Save this article

Short-Term Trend Forecast of Different Traffic Pollutants in Minnesota Based on Spot Velocity Conversion

Author

Listed:
  • Xiaojian Hu

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    School of Transportation, Southeast University, Nanjing 211189, China)

  • Dan Xu

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    School of Transportation, Southeast University, Nanjing 211189, China)

  • Qian Wan

    (School of Transportation, Southeast University, Nanjing 211189, China
    Hualan Design & Consulting Group, Nanning 530011, China)

Abstract

Because traffic pollution is a global problem, the prediction of traffic emissions and the analysis of their influencing factors is the key to adopting management and control measures to reduce traffic emissions. Hence, the evaluation of the actual level of traffic emissions has gained more interest. The Computer Program to calculate Emissions from Road Transport model (COPERT) is being downloaded by 100 users per month and is being used in a large number of applications. This paper uses this model to calculate short-term vehicle emissions. The difference from the traditional research was that the input velocity parameter was not the empirical value, but through reasonable conversion of the spot velocity at one point, obtained by the roadside detector, which provided new ideas for predicting traffic emissions by the COPERT model. The hybrid Autoregressive Integrated Moving Average (ARIMA) Model was used to predict spot mean velocity, after converted it to the predicted interval velocity averaged for some period, input the conversion results and other parameters into the COPERT IV model to forecast short-term vehicle emissions. Six common emissions (CO, NO X , CO 2 , SO 2 , PM 10 , NMVOC) of four types of vehicles (PC, LDV, HDV, BUS) were discussed. As a result, PM 10 emission estimates increased sharply during late peak hours (from 15:30 p.m.–18:00 p.m.), HDV contributed most of NO X and SO 2 , accounting for 39% and 45% respectively. Based on this prediction method, the average traffic emissions on the freeway reached a minimum when interval mean velocity reduced to 40 km/h–60 km/h. This paper establishes a bridge between the emissions and velocity of traffic flow and provides new ideas for forecasting traffic emissions. It is further inferred that the implementation of dynamic velocity guidance and vehicle differential management has a controlling effect that improves on road traffic pollution emissions.

Suggested Citation

  • Xiaojian Hu & Dan Xu & Qian Wan, 2018. "Short-Term Trend Forecast of Different Traffic Pollutants in Minnesota Based on Spot Velocity Conversion," IJERPH, MDPI, vol. 15(9), pages 1-16, September.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:9:p:1925-:d:167733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/9/1925/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/9/1925/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martínez-Díaz, Margarita & Pérez, Ignacio, 2015. "A simple algorithm for the estimation of road traffic space mean speeds from data available to most management centres," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 19-35.
    2. Han Xue & Shan Jiang & Bin Liang, 2013. "A Study on the Model of Traffic Flow and Vehicle Exhaust Emission," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-6, December.
    3. Beidi Diao & Lei Ding & Panda Su & Jinhua Cheng, 2018. "The Spatial-Temporal Characteristics and Influential Factors of NOx Emissions in China: A Spatial Econometric Analysis," IJERPH, MDPI, vol. 15(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Wang & Xue Chen & Yan Xia & Linhui Jiang & Jianjie Ye & Tangyan Hou & Liqiang Wang & Yibo Zhang & Mengying Li & Zhen Li & Zhe Song & Yaping Jiang & Weiping Liu & Pengfei Li & Xiaoye Zhang & Shaocai, 2022. "Operational Data-Driven Intelligent Modelling and Visualization System for Real-World, On-Road Vehicle Emissions—A Case Study in Hangzhou City, China," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    2. Weiwei Xie & Hongbing Deng & Zhaohui Chong, 2019. "The Spatial and Heterogeneity Impacts of Population Urbanization on Fine Particulate (PM 2.5 ) in the Yangtze River Economic Belt, China," IJERPH, MDPI, vol. 16(6), pages 1-17, March.
    3. Xiao Liang & Huifang Song & Gefan Wu & Yongjie Guo & Shu Zhang, 2024. "Complex Traffic Flow Model for Analysis and Optimization of Fuel Consumption and Emissions at Large Roundabouts," Sustainability, MDPI, vol. 16(21), pages 1-26, October.
    4. Ammar Šarić & Suada Sulejmanović & Sanjin Albinović & Mirza Pozder & Žanesa Ljevo, 2023. "The Role of Intersection Geometry in Urban Air Pollution Management," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    5. Haoran Zhao & Sen Guo & Huiru Zhao, 2019. "Quantifying the Impacts of Economic Progress, Economic Structure, Urbanization Process, and Number of Vehicles on PM 2.5 Concentration: A Provincial Panel Data Model Analysis of China," IJERPH, MDPI, vol. 16(16), pages 1-18, August.
    6. Agarwal, Avinash Kumar & Mustafi, Nirendra Nath, 2021. "Real-world automotive emissions: Monitoring methodologies, and control measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:9:p:1925-:d:167733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.