IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i4p566-d137388.html
   My bibliography  Save this article

Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data

Author

Listed:
  • Zihan Kan

    (State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

  • Luliang Tang

    (State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

  • Mei-Po Kwan

    (Department of Geography & Geographic Information Science, University of Illinois at Urbana-Champaign, 1301 W Green Street, Urbana, IL 61801, USA
    Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, P.O. Box 80125, 3508 TC Utrecht, The Netherlands)

  • Xia Zhang

    (School of Urban Design, Wuhan University, Wuhan 430070, China)

Abstract

The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles’ mobile activities ( MA ) and stationary activities ( SA ). First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS). Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA , SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles’ activities in road networks.

Suggested Citation

  • Zihan Kan & Luliang Tang & Mei-Po Kwan & Xia Zhang, 2018. "Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data," IJERPH, MDPI, vol. 15(4), pages 1-23, March.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:4:p:566-:d:137388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/4/566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/4/566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2014. "The fleet size and mix pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 239-254.
    2. Osorio, Carolina & Nanduri, Kanchana, 2015. "Urban transportation emissions mitigation: Coupling high-resolution vehicular emissions and traffic models for traffic signal optimization," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 520-538.
    3. Downs, Joni A. & Horner, Mark W., 2012. "Probabilistic potential path trees for visualizing and analyzing vehicle tracking data," Journal of Transport Geography, Elsevier, vol. 23(C), pages 72-80.
    4. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beibei Zhang & Sheng Wu & Shifen Cheng & Feng Lu & Peng Peng, 2019. "Spatial Characteristics and Factor Analysis of Pollution Emission from Heavy-Duty Diesel Trucks in the Beijing–Tianjin–Hebei Region, China," IJERPH, MDPI, vol. 16(24), pages 1-16, December.
    2. Longlong Leng & Yanwei Zhao & Jingling Zhang & Chunmiao Zhang, 2019. "An Effective Approach for the Multiobjective Regional Low-Carbon Location-Routing Problem," IJERPH, MDPI, vol. 16(11), pages 1-28, June.
    3. Jacek Oskarbski & Konrad Biszko, 2022. "Estimation of Vehicle Energy Consumption at Intersections Using Microscopic Traffic Models," Energies, MDPI, vol. 16(1), pages 1-35, December.
    4. Muhammad Zubair & Shuyan Chen & Yongfeng Ma & Xiaojian Hu, 2023. "A Systematic Review on Carbon Dioxide (CO 2 ) Emission Measurement Methods under PRISMA Guidelines: Transportation Sustainability and Development Programs," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    5. Ana Louro & Nuno Marques da Costa & Eduarda Marques da Costa, 2021. "From Livable Communities to Livable Metropolis: Challenges for Urban Mobility in Lisbon Metropolitan Area (Portugal)," IJERPH, MDPI, vol. 18(7), pages 1-22, March.
    6. Vanessa Brum-Bastos & Antonio Páez, 2023. "Hägerstrand meets big data: time-geography in the age of mobility analytics," Journal of Geographical Systems, Springer, vol. 25(3), pages 327-336, July.
    7. Zilong Zhao & Mengyuan Fang & Luliang Tang & Xue Yang & Zihan Kan & Qingquan Li, 2022. "The Impact of Community Shuttle Services on Traffic and Traffic-Related Air Pollution," IJERPH, MDPI, vol. 19(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jishi & Jia, Peng & Feng, Tao & Li, Haijiang & Kuang, Haibo & Zhang, Junyi, 2023. "Uncovering the spatiotemporal impacts of built environment on traffic carbon emissions using multi-source big data," Land Use Policy, Elsevier, vol. 129(C).
    2. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    3. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    4. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    5. Osorio, Carolina & Punzo, Vincenzo, 2019. "Efficient calibration of microscopic car-following models for large-scale stochastic network simulators," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 156-173.
    6. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    7. Flötteröd, Gunnar, 2017. "A search acceleration method for optimization problems with transport simulation constraints," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 239-260.
    8. Junwoo Song & Simon Hu & Ke Han & Chaozhe Jiang, 2020. "Nonlinear Decision Rule Approach for Real-Time Traffic Signal Control for Congestion and Emission Mitigation," Networks and Spatial Economics, Springer, vol. 20(3), pages 675-702, September.
    9. Joni A Downs & Mark W Horner, 2014. "Adaptive-Velocity Time-Geographic Density Estimation for Mapping the Potential and Probable Locations of Mobile Objects," Environment and Planning B, , vol. 41(6), pages 1006-1021, December.
    10. Tricoire, Fabien & Parragh, Sophie N., 2017. "Investing in logistics facilities today to reduce routing emissions tomorrow," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 56-67.
    11. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    12. Paraskevopoulos, Dimitris C. & Gürel, Sinan & Bektaş, Tolga, 2016. "The congested multicommodity network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 166-187.
    13. Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
    14. Yu, Yang & Wu, Yuting & Wang, Junwei, 2019. "Bi-objective green ride-sharing problem: Model and exact method," International Journal of Production Economics, Elsevier, vol. 208(C), pages 472-482.
    15. Li, Xijing & Ma, Xinlin & Wilson, Bev, 2021. "Beyond absolute space: An exploration of relative and relational space in Shanghai using taxi trajectory data," Journal of Transport Geography, Elsevier, vol. 93(C).
    16. Zhang, Zhenzhen & Wei, Lijun & Lim, Andrew, 2015. "An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 20-35.
    17. Dukkanci, Okan & Karsu, Özlem & Kara, Bahar Y., 2022. "Planning sustainable routes: Economic, environmental and welfare concerns," European Journal of Operational Research, Elsevier, vol. 301(1), pages 110-123.
    18. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    19. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    20. Zu-Jun Ma & Fei Yang & Ying Dai & Zuo-Jun Max Shen, 2021. "The Migratory Beekeeping Routing Problem: Model and an Exact Algorithm," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 319-335, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:4:p:566-:d:137388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.