IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i2p239-d129537.html
   My bibliography  Save this article

Microwave-Hydrothermal Treated Grape Peel as an Efficient Biosorbent for Methylene Blue Removal

Author

Listed:
  • Lin Ma

    (Department of Industry and Academy Collaborative Development, Xiamen University of Technology, 600 Ligong Road, Jimei District, Xiamen 361024, China)

  • Chunhai Jiang

    (Fujian Provincial Key Laboratory of Functional Materials and Applications, Institute of Advanced Energy Materials, School of Materials Science and Engineering, Xiamen University of Technology, 600 Ligong Road, Jimei, Xiamen 361024, China)

  • Zhenyu Lin

    (MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou 350116, China)

  • Zhimin Zou

    (Fujian Provincial Key Laboratory of Functional Materials and Applications, Institute of Advanced Energy Materials, School of Materials Science and Engineering, Xiamen University of Technology, 600 Ligong Road, Jimei, Xiamen 361024, China)

Abstract

Biosorption using agricultural wastes has been proven as a low cost and efficient way for wastewater treatment. Herein, grape peel treated by microwave- and conventional-hydrothermal processes was used as low cost biosorbent to remove methylene blue (MB) from aqueous solutions. The adsorption parameters including the initial pH value, dosage of biosorbents, contact time, and initial MB concentration were investigated to find the optimum adsorption conditions. The biosorbent obtained by microwave-hydrothermal treatment only for 3 min at 180 °C (microwave-hydrothermal treated grape peel, MGP) showed faster kinetics and higher adsorption capability than that produced by a conventional-hydrothermal process (hydrothermal treated grape peel, HGP) with a duration time of 16 h. The maximum adsorption capability of MGP under the optimum conditions (pH = 11, a dosage of 2.50 g/L) as determined with the Langmuir model reached 215.7 mg/g, which was among the best values achieved so far on biosorbents. These results demonstrated that the grape peel treated by a quick microwave-hydrothermal process can be a very promising low cost and efficient biosorbent for organic dye removal from aqueous solutions.

Suggested Citation

  • Lin Ma & Chunhai Jiang & Zhenyu Lin & Zhimin Zou, 2018. "Microwave-Hydrothermal Treated Grape Peel as an Efficient Biosorbent for Methylene Blue Removal," IJERPH, MDPI, vol. 15(2), pages 1-10, January.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:2:p:239-:d:129537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/2/239/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/2/239/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Rodríguez-Chueca & Esther Alonso & Devendra Narain Singh, 2019. "Photocatalytic Mechanisms for Peroxymonosulfate Activation through the Removal of Methylene Blue: A Case Study," IJERPH, MDPI, vol. 16(2), pages 1-13, January.
    2. Li Liu & Shisuo Fan & Yang Li, 2018. "Removal Behavior of Methylene Blue from Aqueous Solution by Tea Waste: Kinetics, Isotherms and Mechanism," IJERPH, MDPI, vol. 15(7), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:2:p:239-:d:129537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.