IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i11p2600-d184378.html
   My bibliography  Save this article

Degradation of the Nonsteroidal Anti-Inflammatory Drug Piroxicam by Iron Activated Persulfate: The Role of Water Matrix and Ultrasound Synergy

Author

Listed:
  • Zacharias Frontistis

    (Department of Environmental Engineering, University of Western Macedonia, GR-50100 Kozani, Greece)

Abstract

This work examined the oxidation of Piroxicam (PIR), a representative nonsteroidal anti-inflammatory drug using iron activated persulfate. The effect of persulfate dosing was vital for the efficiency of the process. The addition of 20 mg/L sodium persulfate (SPS) eliminated 500 μg/L of PIR in less than 20 min at natural pH. PIR decomposition followed pseudo-first-order kinetics, and the observed kinetic constant increased by 2.1 times when the initial concentration of PIR decreased from 2000 to 250 μg/L. Acidic pH favored the PIR destruction, while both sulfate and hydroxyl radicals are involved in PIR destruction at natural pH. The effect of inorganic ions like bicarbonate and chlorides was almost insignificant on PIR removal. The presence of humic acid reduced PIR removal from 100% to 67% after 20 min of treatment with 2 mg/L Fe 2+ and 20 mg/L SPS. The experiment that was performed with bottled water showed similar efficiency with ultrapure water, while in the case of secondary effluent, PIR removal decreased by 26% after 30 min of treatment. The Fe 2+ /SPS/ultrasound hybrid process showed a low degree of synergy (18.3%). The ecotoxicity of aqueous solution using the Vibrio fischeri as an indicator was reduced during the treatment, although with a different trend from the removal of PIR, possibly due to byproducts derived from the oxidation of secondary effluent and PIR.

Suggested Citation

  • Zacharias Frontistis, 2018. "Degradation of the Nonsteroidal Anti-Inflammatory Drug Piroxicam by Iron Activated Persulfate: The Role of Water Matrix and Ultrasound Synergy," IJERPH, MDPI, vol. 15(11), pages 1-16, November.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:11:p:2600-:d:184378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/11/2600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/11/2600/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaxuan Gao & Wenran Gao & Haonan Zhu & Haoran Chen & Shanshan Yan & Ming Zhao & Hongqi Sun & Junjie Zhang & Shu Zhang, 2022. "A Review on N-Doped Biochar for Oxidative Degradation of Organic Contaminants in Wastewater by Persulfate Activation," IJERPH, MDPI, vol. 19(22), pages 1-25, November.
    2. Cássia Sidney Santana & Márcio Daniel Nicodemos Ramos & Camila Cristina Vieira Velloso & André Aguiar, 2019. "Kinetic Evaluation of Dye Decolorization by Fenton Processes in the Presence of 3-Hydroxyanthranilic Acid," IJERPH, MDPI, vol. 16(9), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:11:p:2600-:d:184378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.