IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2017i1p24-d124141.html
   My bibliography  Save this article

Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas

Author

Listed:
  • Maja Radziemska

    (Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-776, Poland)

  • Eugeniusz Koda

    (Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-776, Poland)

  • Ayla Bilgin

    (Faculty of Engineering, Artvin Coruh University, Seyitler Campus, Artvin 08000, Turkey)

  • Mgdalena D. Vaverková

    (Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, Brno 613-00, Czech Republic)

Abstract

The experiment was carried out in order to evaluate the effects of trace element immobilizing soil amendments, i.e., chalcedonite, dolomite, halloysite, and diatomite on the chemical characteristics of soil contaminated with Cr and the uptake of metals by plants. The study utilized analysis of variance (ANOVA), principal component analysis (PCA) and Factor Analysis (FA). The content of trace elements in plants, pseudo-total and extracted by 0.01 M CaCl 2 , were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of Indian mustard ( Brassica juncea L.) differed significantly in the case of applying amendments to the soil, as well as Cr contamination. The greatest average above-ground biomass was observed when halloysite and dolomite were amended to the soil. Halloysite caused significant increases of Cr concentrations in the roots. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using Indian mustard in phytostabilization techniques. The addition of diatomite significantly increased soil pH. Halloysite and chalcedonite were shown to be the most effective and decreased the average Cr, Cu and Zn contents in soil.

Suggested Citation

  • Maja Radziemska & Eugeniusz Koda & Ayla Bilgin & Mgdalena D. Vaverková, 2017. "Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas," IJERPH, MDPI, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:gam:jijerp:v:15:y:2017:i:1:p:24-:d:124141
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/1/24/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/1/24/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maja Radziemska & Magdalena D. Vaverková & Anna Baryła, 2017. "Phytostabilization—Management Strategy for Stabilizing Trace Elements in Contaminated Soils," IJERPH, MDPI, vol. 14(9), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Pusz & Magdalena Wiśniewska & Dominik Rogalski, 2021. "Assessment of the Accumulation Ability of Festuca rubra L. and Alyssum saxatile L. Tested on Soils Contaminated with Zn, Cd, Ni, Pb, Cr, and Cu," Resources, MDPI, vol. 10(5), pages 1-18, May.
    2. Andrea Lazo & Pamela Lazo & Alejandra Urtubia & María Gabriela Lobos & Henrik K. Hansen & Claudia Gutiérrez, 2022. "An Assessment of the Metal Removal Capability of Endemic Chilean Species," IJERPH, MDPI, vol. 19(6), pages 1-14, March.
    3. Pamela Lazo & Andrea Lazo & Henrik K. Hansen & Rodrigo Ortiz-Soto & Marcela E. Hansen & Felipe Arévalo & Claudia Gutiérrez, 2023. "Removal of Heavy Metals from Mine Tailings in Central Chile Using Solidago chilensis Meyen, Haplopappus foliosus DC, and Lycium chilense Miers ex Bertero," IJERPH, MDPI, vol. 20(3), pages 1-11, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2017:i:1:p:24-:d:124141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.