IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i5p507-d98052.html
   My bibliography  Save this article

Human Indoor Exposure to Airborne Halogenated Flame Retardants: Influence of Airborne Particle Size

Author

Listed:
  • Mark J. La Guardia

    (College of William & Mary, Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA 23062, USA)

  • Erika D. Schreder

    (Toxic-Free Future, 4649 Sunnyside Ave N, Suite 540, Seattle, WA 98103, USA)

  • Nancy Uding

    (Toxic-Free Future, 4649 Sunnyside Ave N, Suite 540, Seattle, WA 98103, USA)

  • Robert C. Hale

    (College of William & Mary, Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA 23062, USA)

Abstract

Inhalation of halogenated flame-retardants (HFRs) released from consumer products is an important route of exposure. However, not all airborne HFRs are respirable, and thus interact with vascular membranes within the gas exchange (alveolar) region of the lung. HFRs associated with large (>4 µm), inhalable airborne particulates are trapped on the mucosal lining of the respiratory tract and then are expelled or swallowed. The latter may contribute to internal exposure via desorption from particles in the digestive tract. Exposures may also be underestimated if personal activities that re-suspend particles into the breathing zone are not taken into account. Here, samples were collected using personal air samplers, clipped to the participants’ shirt collars (n = 18). We observed that the larger, inhalable air particulates carried the bulk (>92%) of HFRs. HFRs detected included those removed from commerce (i.e., polybrominated diphenyl ethers (Penta-BDEs: BDE-47, -85, -100, -99, and -153)), their replacements; e.g., 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB or EH-TBB); bis(2-ethylhexyl) 3,4,5,6-tetrabromophthalate (TBPH or BEH-TEBP) and long-produced chlorinated organophosphate-FRs (ClOPFRs): tris(2-chloroethyl)phosphate (TCEP), tris(1-chloro-2-propyl)phosphate (TCPP or TCIPP), and tris(1,3-dichloro-2-propyl)phosphate (TDCPP or TDCIPP). Our findings suggest estimates relying on a single exposure route, i.e., alveolar gas exchange, may not accurately estimate HFR internal dosage, as they ignore contributions from larger inhalable particulates that enter the digestive tract. Consideration of the fate and bioavailability of these larger particulates resulted in higher dosage estimates for HFRs with log K oa < 12 (i.e., Penta-BDEs and ClOPFRs) and lower estimates for those with log K oa > 12 (i.e., TBB and TBPH) compared to the alveolar route exposure alone. Of those HFRs examined, the most significant effect was the lower estimate by 41% for TBPH. The bulk of TBPH uptake from inhaled particles was estimated to be through the digestive tract, with lower bioavailability. We compared inhalation exposure estimates to chronic oral reference doses (R f Ds) established by several regulatory agencies. The U.S. Environmental Protection Agency (EPA) R f D levels for several HFRs are considered outdated; however, BDE-99 levels exceeded those suggested by the Dutch National Institute for Public Health and the Environment (RIVM) by up to 26 times. These findings indicate that contributions and bioavailability of respirable and inhalable airborne particulates should both be considered in future risk assessments.

Suggested Citation

  • Mark J. La Guardia & Erika D. Schreder & Nancy Uding & Robert C. Hale, 2017. "Human Indoor Exposure to Airborne Halogenated Flame Retardants: Influence of Airborne Particle Size," IJERPH, MDPI, vol. 14(5), pages 1-14, May.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:5:p:507-:d:98052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/5/507/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/5/507/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandra Cincinelli & Tania Martellini, 2017. "Indoor Air Quality and Health," IJERPH, MDPI, vol. 14(11), pages 1-5, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:5:p:507-:d:98052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.