IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v13y2016i9p855-d77142.html
   My bibliography  Save this article

The Relationship between Phytoplankton Evenness and Copepod Abundance in Lake Nansihu, China

Author

Listed:
  • Wang Tian

    (Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China)

  • Huayong Zhang

    (Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China)

  • Lei Zhao

    (Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China)

  • Xiang Xu

    (Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China)

  • Hai Huang

    (Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China)

Abstract

The relationship between biodiversity and ecosystem functioning is a central issue in ecology. Previous studies have shown that producer diversity can impact the consumer community via predator-prey interactions. However, direct observations of this relationship remain rare, in particular for aquatic ecosystems. In this research, the relationship between phytoplankton diversity (species richness and evenness) and the abundance of copepods was analyzed in Lake Nansihu, a meso-eutrophic lake in China. The results showed that copepods abundance was significantly decreased with increasing phytoplankton evenness throughout the year. However, both species richness and phytoplankton biomass showed no significant relationship with the abundance of copepods. Canonical correspondence analysis revealed that phytoplankton evenness was negatively correlated with Thermocyclops kawamurai , Cyclops vicinus , Eucyclops serrulatus , Mesocyclops leuckarti , Sinocalanus tenellus , Sinocalanus dorrii , Copepods nauplius , but positively correlated with many Cyanophyta species ( Chroococcus minutus , Dactylococcopsis acicularis , Microcystis incerta , Merismopedia tenuissima , Merismopedia sinica and Lyngbya limnetica ). Based on our results, phytoplankton evenness was a better predictor of copepods abundance in meso-eutrophic lakes. These results provide new insights into the relationship between diversity and ecosystem functioning in aquatic ecosystems.

Suggested Citation

  • Wang Tian & Huayong Zhang & Lei Zhao & Xiang Xu & Hai Huang, 2016. "The Relationship between Phytoplankton Evenness and Copepod Abundance in Lake Nansihu, China," IJERPH, MDPI, vol. 13(9), pages 1-15, August.
  • Handle: RePEc:gam:jijerp:v:13:y:2016:i:9:p:855-:d:77142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/13/9/855/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/13/9/855/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Wang & Hong Jiang & Jiaxin Jin & Xiuying Zhang & Xuehe Lu & Yueqi Wang, 2015. "Spatial-Temporal Variations of Chlorophyll-a in the Adjacent Sea Area of the Yangtze River Estuary Influenced by Yangtze River Discharge," IJERPH, MDPI, vol. 12(5), pages 1-19, May.
    2. Sarah C. B. Christensen & Erik Arvin & Erling Nissen & Hans-Jørgen Albrechtsen, 2013. "Asellus aquaticus as a Potential Carrier of Escherichia coli and Other Coliform Bacteria into Drinking Water Distribution Systems," IJERPH, MDPI, vol. 10(3), pages 1-11, March.
    3. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A. Wardle & Ann P. Kinzig & Gre, 2012. "Biodiversity loss and its impact on humanity," Nature, Nature, vol. 486(7401), pages 59-67, June.
    4. F. Stuart Chapin III & Erika S. Zavaleta & Valerie T. Eviner & Rosamond L. Naylor & Peter M. Vitousek & Heather L. Reynolds & David U. Hooper & Sandra Lavorel & Osvaldo E. Sala & Sarah E. Hobbie & Mic, 2000. "Consequences of changing biodiversity," Nature, Nature, vol. 405(6783), pages 234-242, May.
    5. Florence D. Hulot & Gérard Lacroix & Françoise Lescher-Moutoué & Michel Loreau, 2000. "Functional diversity governs ecosystem response to nutrient enrichment," Nature, Nature, vol. 405(6784), pages 340-344, May.
    6. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A.Wardle & Ann P. Kinzig & Gret, 2012. "Correction: Corrigendum: Biodiversity loss and its impact on humanity," Nature, Nature, vol. 489(7415), pages 326-326, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriela Woźniak & Monika Malicka & Jacek Kasztowski & Łukasz Radosz & Joanna Czarnecka & Jaco Vangronsveld & Dariusz Prostański, 2022. "How Important Are the Relations between Vegetation Diversity and Bacterial Functional Diversity for the Functioning of Novel Ecosystems?," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    2. Chun-Wei Chang & Takeshi Miki & Hao Ye & Sami Souissi & Rita Adrian & Orlane Anneville & Helen Agasild & Syuhei Ban & Yaron Be’eri-Shlevin & Yin-Ru Chiang & Heidrun Feuchtmayr & Gideon Gal & Satoshi I, 2022. "Causal networks of phytoplankton diversity and biomass are modulated by environmental context," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Reed, James & van Vianen, Josh & Foli, Samson & Clendenning, Jessica & Yang, Kevin & MacDonald, Margaret & Petrokofsky, Gillian & Padoch, Christine & Sunderland, Terry, 2017. "Trees for life: The ecosystem service contribution of trees to food production and livelihoods in the tropics," Forest Policy and Economics, Elsevier, vol. 84(C), pages 62-71.
    4. Imran Khan & Hongdou Lei & Gaffar Ali & Shahid Ali & Minjuan Zhao, 2019. "Public Attitudes, Preferences and Willingness to Pay for River Ecosystem Services," IJERPH, MDPI, vol. 16(19), pages 1-17, October.
    5. Wang Tian & Huayong Zhang & Lei Zhao & Feifan Zhang & Hai Huang, 2017. "Phytoplankton Diversity Effects on Community Biomass and Stability along Nutrient Gradients in a Eutrophic Lake," IJERPH, MDPI, vol. 14(1), pages 1-15, January.
    6. Yang Liu & Jing Zhao & Xi Zheng & Xiaoyang Ou & Yaru Zhang & Jiaying Li, 2023. "Evaluation of Biodiversity Maintenance Capacity in Forest Landscapes: A Case Study in Beijing, China," Land, MDPI, vol. 12(7), pages 1-23, June.
    7. Kedi Liu & Ranran Wang & Inge Schrijver & Rutger Hoekstra, 2024. "Can we project well-being? Towards integral well-being projections in climate models and beyond," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    8. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    10. Sueur, Cédric & Fourneret, Eric & Espinosa, Romain, 2023. "Animal capital: a new way to define human-animal bond in view of global changes," OSF Preprints svg7x, Center for Open Science.
    11. Bogoni, Juliano André & Peres, Carlos A. & Ferraz, Katia M.P.M.B., 2020. "Effects of mammal defaunation on natural ecosystem services and human well being throughout the entire Neotropical realm," Ecosystem Services, Elsevier, vol. 45(C).
    12. Daniels, Silvie & Bellmore, J. Ryan & Benjamin, Joseph R. & Witters, Nele & Vangronsveld, Jaco & Van Passel, Steven, 2018. "Quantification of the Indirect Use Value of Functional Group Diversity Based on the Ecological Role of Species in the Ecosystem," Ecological Economics, Elsevier, vol. 153(C), pages 181-194.
    13. Yiwei Lian & Yang Bai & Zhongde Huang & Maroof Ali & Jie Wang & Haoran Chen, 2024. "Spatio-Temporal Changes and Habitats of Rare and Endangered Species in Yunnan Province Based on MaxEnt Model," Land, MDPI, vol. 13(2), pages 1-19, February.
    14. Gaeun Kim & Jiwon Kim & Youngjin Ko & Olebogeng Thelma G. Eyman & Sarwat Chowdhury & Julie Adiwal & Wookyun Lee & Yowhan Son, 2021. "How Do Nature-Based Solutions Improve Environmental and Socio-Economic Resilience to Achieve the Sustainable Development Goals? Reforestation and Afforestation Cases from the Republic of Korea," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    15. Guangdong Li & Chuanglin Fang & James E. M. Watson & Siao Sun & Wei Qi & Zhenbo Wang & Jianguo Liu, 2024. "Mixed effectiveness of global protected areas in resisting habitat loss," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Shuangshuang Liu & Qipeng Liao & Mingzhu Xiao & Dengyue Zhao & Chunbo Huang, 2022. "Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    18. Jennifer M. H. Loch & Linda J. Walters & Melinda L. Donnelly & Geoffrey S. Cook, 2021. "Restored Coastal Habitat Can “Reel In” Juvenile Sportfish: Population and Community Responses in the Indian River Lagoon, Florida, USA," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    19. Jessica Chavez & Vincent Nijman & Desak Ketut Tristiana Sukmadewi & Made Dwi Sadnyana & Sophie Manson & Marco Campera, 2024. "Impact of Farm Management on Soil Fertility in Agroforestry Systems in Bali, Indonesia," Sustainability, MDPI, vol. 16(18), pages 1-15, September.
    20. Waleed Iqbal & Muhammad Zahir Afridi & Aftab Jamal & Adil Mihoub & Muhammad Farhan Saeed & Árpád Székely & Adil Zia & Muhammad Awais Khan & Alfredo Jarma-Orozco & Marcelo F. Pompelli, 2022. "Canola Seed Priming and Its Effect on Gas Exchange, Chlorophyll Photobleaching, and Enzymatic Activities in Response to Salt Stress," Sustainability, MDPI, vol. 14(15), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:13:y:2016:i:9:p:855-:d:77142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.