IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i11p14132-14147d58387.html
   My bibliography  Save this article

Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings

Author

Listed:
  • Peter Wallner

    (Institute of Environmental Health, Center for Public Health, Medical University Vienna, Kinderspitalgasse 15, Vienna 1090, Austria)

  • Ute Munoz

    (Austrian Institute for Healthy and Ecological Building, Alserbachstraße 5, Vienna 1090, Austria)

  • Peter Tappler

    (Austrian Institute for Healthy and Ecological Building, Alserbachstraße 5, Vienna 1090, Austria)

  • Anna Wanka

    (Institute of Sociology, University Vienna, Austria, Alserbachstraße 5, Vienna 1090, Austria)

  • Michael Kundi

    (Institute of Environmental Health, Center for Public Health, Medical University Vienna, Kinderspitalgasse 15, Vienna 1090, Austria)

  • Janie F. Shelton

    (Institute of Environmental Health, Center for Public Health, Medical University Vienna, Kinderspitalgasse 15, Vienna 1090, Austria)

  • Hans-Peter Hutter

    (Institute of Environmental Health, Center for Public Health, Medical University Vienna, Kinderspitalgasse 15, Vienna 1090, Austria)

Abstract

Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

Suggested Citation

  • Peter Wallner & Ute Munoz & Peter Tappler & Anna Wanka & Michael Kundi & Janie F. Shelton & Hans-Peter Hutter, 2015. "Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings," IJERPH, MDPI, vol. 12(11), pages 1-16, November.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:11:p:14132-14147:d:58387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/11/14132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/11/14132/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoping Liu & Xiaojiao Wu & Linjing Chen & Rui Zhou, 2018. "Effects of Internal Partitions on Flow Field and Air Contaminant Distribution under Different Ventilation Modes," IJERPH, MDPI, vol. 15(11), pages 1-15, November.
    2. Suchi Priyadarshani & Roshan R. Rao & Monto Mani & Daniel Maskell, 2023. "Examining Occupant-Comfort Responses to Indoor Humidity Ratio in Conventional and Vernacular Dwellings: A Rural Indian Case Study," Energies, MDPI, vol. 16(19), pages 1-27, September.
    3. Joanna Ferdyn-Grygierek & Krzysztof Grygierek, 2024. "Ventilation Methods for Improving the Indoor Air Quality and Energy Efficiency of Multi-Family Buildings in Central Europe," Energies, MDPI, vol. 17(9), pages 1-21, May.
    4. Peter Wallner & Peter Tappler & Ute Munoz & Bernhard Damberger & Anna Wanka & Michael Kundi & Hans-Peter Hutter, 2017. "Health and Wellbeing of Occupants in Highly Energy Efficient Buildings: A Field Study," IJERPH, MDPI, vol. 14(3), pages 1-11, March.
    5. Hélène Niculita-Hirzel, 2022. "Latest Trends in Pollutant Accumulations at Threatening Levels in Energy-Efficient Residential Buildings with and without Mechanical Ventilation: A Review," IJERPH, MDPI, vol. 19(6), pages 1-12, March.
    6. Chengju Wang & Juan Wang & Dan Norbäck, 2022. "A Systematic Review of Associations between Energy Use, Fuel Poverty, Energy Efficiency Improvements and Health," IJERPH, MDPI, vol. 19(12), pages 1-29, June.
    7. Hélène Niculita-Hirzel & Shen Yang & Corinne Hager Jörin & Vincent Perret & Dusan Licina & Joëlle Goyette Pernot, 2020. "Fungal Contaminants in Energy Efficient Dwellings: Impact of Ventilation Type and Level of Urbanization," IJERPH, MDPI, vol. 17(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:11:p:14132-14147:d:58387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.