IDEAS home Printed from https://ideas.repec.org/a/gam/jgeogr/v2y2022i3p28-475d875930.html
   My bibliography  Save this article

Understanding Flood Risk and Vulnerability of a Place: Estimating Prospective Loss and Damage Using the HAZUS Model

Author

Listed:
  • C. Emdad Haque

    (Natural Resources Institute, University of Manitoba, Winnipeg, MB R3T 2M6, Canada)

  • Khandakar Hasan Mahmud

    (Department of Geography and Environment, Jahangirnagar University, Savar 1342, Bangladesh)

  • David Walker

    (Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 3M6, Canada)

Abstract

In the field of flood management, risk and loss estimation is a prerequisite to undertake precautionary measures. Among several available tools, the HAZUS model is one of the most effective ones that can assist in the analysis of different dimensions of natural hazards, such as earthquakes, hurricanes, floods, and tsunamis. The flood hazard analysis portion of the model characterizes the spatial variation of flood regimes for a given study area. This research attempts to illustrate how the geoinformatics tool HAZUS can help in estimating overall risk and potential loss and damage due to floods and how this knowledge can guide the decision-making process and enhance community resilience. Examining a case study in the Rural Municipality of St. Andrews in Manitoba, Canada, this study found that both the ‘Quick Look’ and ‘Enhanced Quick Look’ analyses provided robust results. However, for the RM of St. Andrews, which is characterized by differing levels of exposure on the floodplain, and where many new housing starts occur in high-risk flood zones, ‘Enhanced Quick Look’ with spatially explicit building stock is recommended. The case study of the RM of St. Andrews demonstrates that the HAZUS model can predict loss and damage with increasing magnitude of flooding depth. It is thus recognized that the risk and loss estimation tools can be effective means for future flood loss and damage reduction.

Suggested Citation

  • C. Emdad Haque & Khandakar Hasan Mahmud & David Walker, 2022. "Understanding Flood Risk and Vulnerability of a Place: Estimating Prospective Loss and Damage Using the HAZUS Model," Geographies, MDPI, vol. 2(3), pages 1-23, July.
  • Handle: RePEc:gam:jgeogr:v:2:y:2022:i:3:p:28-475:d:875930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-7086/2/3/28/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-7086/2/3/28/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James Carl Banks & Janey V. Camp & Mark D. Abkowitz, 2016. "A screening method for bridge scour estimation and flood adaptation planning utilizing HAZUS-MH 2.1 and HEC-18," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1731-1746, September.
    2. Jonathan W. F. Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    3. Jonathan Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    4. C. Emdad Haque & Mahed-Ul-Islam Choudhury & Md. Sowayib Sikder, 2019. "“Events and failures are our only means for making policy changes”: learning in disaster and emergency management policies in Manitoba, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 137-162, August.
    5. C. Emdad Haque, 2000. "Risk Assessment, Emergency Preparedness and Response to Hazards: The Case of the 1997 Red River Valley Flood, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 21(2), pages 225-245, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.
    2. Diana Carolina Del Angel & David Yoskowitz & Matthew Vernon Bilskie & Scott C. Hagen, 2022. "A Socioeconomic Dataset of the Risk Associated with the 1% and 0.2% Return Period Stillwater Flood Elevation under Sea-Level Rise for the Northern Gulf of Mexico," Data, MDPI, vol. 7(6), pages 1-15, May.
    3. Corinne J. Schuster-Wallace & Steven J. Murray & Edward A. McBean, 2018. "Integrating Social Dimensions into Flood Cost Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3175-3187, July.
    4. Tugkan Tanir & Andre de Souza de Lima & Gustavo A. Coelho & Sukru Uzun & Felicio Cassalho & Celso M. Ferreira, 2021. "Assessing the spatiotemporal socioeconomic flood vulnerability of agricultural communities in the Potomac River Watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 225-251, August.
    5. C. Emdad Haque & Mahed-Ul-Islam Choudhury & Md. Sowayib Sikder, 2019. "“Events and failures are our only means for making policy changes”: learning in disaster and emergency management policies in Manitoba, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 137-162, August.
    6. Mauerhofer, Volker, 2016. "Public participation in environmental matters: Compendium, challenges and chances globally," Land Use Policy, Elsevier, vol. 52(C), pages 481-491.
    7. Huiquan Wang & Hong Ye & Lu Liu & Jixia Li, 2022. "Evaluation and Obstacle Analysis of Emergency Response Capability in China," IJERPH, MDPI, vol. 19(16), pages 1-25, August.
    8. Jobaed Ragib Zaman & C. Emdad Haque & David Walker, 2022. "Local-Level Flood Hazard Management in Canada: An Assessment of Institutional Structure and Community Engagement in the Red River Valley of Manitoba," Geographies, MDPI, vol. 2(4), pages 1-26, December.
    9. Jing Tan & Li Peng & Shili Guo, 2020. "Measuring Household Resilience in Hazard-Prone Mountain Areas: A Capacity-Based Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(3), pages 1153-1176, December.
    10. Samuel Brody & Jung Kang & Sarah Bernhardt, 2010. "Identifying factors influencing flood mitigation at the local level in Texas and Florida: the role of organizational capacity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 167-184, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgeogr:v:2:y:2022:i:3:p:28-475:d:875930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.