Author
Listed:
- Rana Albelaihi
(Department of Computer Science, College of Engineering and Information Technology, Onaizah Colleges, Qassim 56447, Saudi Arabia)
Abstract
This paper presents the Mobility-Aware Client Selection (MACS) strategy, developed to address the challenges associated with client mobility in Federated Learning (FL). FL enables decentralized machine learning by allowing collaborative model training without sharing raw data, preserving privacy. However, client mobility and limited resources in IoT environments pose significant challenges to the efficiency and reliability of FL. MACS is designed to maximize client participation while ensuring timely updates under computational and communication constraints. The proposed approach incorporates a Mobility Prediction Model to forecast client connectivity and resource availability and a Resource-Aware Client Evaluation mechanism to assess eligibility based on predicted latencies. MACS optimizes client selection, improves convergence rates, and enhances overall system performance by employing these predictive capabilities and a dynamic resource allocation strategy. The evaluation includes comparisons with advanced baselines such as Reinforcement Learning-based FL (RL-based) and Deep Learning-based FL (DL-based), in addition to Static and Random selection methods. For the CIFAR dataset, MACS achieved a final accuracy of 95%, outperforming Static selection (85%), Random selection (80%), RL-based FL (90%), and DL-based FL (93%). Similarly, for the MNIST dataset, MACS reached 98% accuracy, surpassing Static selection (92%), Random selection (88%), RL-based FL (94%), and DL-based FL (96%). Additionally, MACS consistently required fewer iterations to achieve target accuracy levels, demonstrating its efficiency in dynamic IoT environments. This strategy provides a scalable and adaptable solution for sustainable federated learning across diverse IoT applications, including smart cities, healthcare, and industrial automation.
Suggested Citation
Rana Albelaihi, 2025.
"Mobility Prediction and Resource-Aware Client Selection for Federated Learning in IoT,"
Future Internet, MDPI, vol. 17(3), pages 1-20, March.
Handle:
RePEc:gam:jftint:v:17:y:2025:i:3:p:109-:d:1603316
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:3:p:109-:d:1603316. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.