Navigating Challenges and Harnessing Opportunities: Deep Learning Applications in Internet of Medical Things
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sang Won Choi & Brian H. S. Kim, 2021. "Applying PCA to Deep Learning Forecasting Models for Predicting PM 2.5," Sustainability, MDPI, vol. 13(7), pages 1-30, March.
- Shirin Enshaeifar & Ahmed Zoha & Severin Skillman & Andreas Markides & Sahr Thomas Acton & Tarek Elsaleh & Mark Kenny & Helen Rostill & Ramin Nilforooshan & Payam Barnaghi, 2019. "Machine learning methods for detecting urinary tract infection and analysing daily living activities in people with dementia," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-22, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Longhui Fu & Qibang Wang & Jianhui Li & Huiran Jin & Zhen Zhen & Qingbin Wei, 2022. "Spatiotemporal Heterogeneity and the Key Influencing Factors of PM 2.5 and PM 10 in Heilongjiang, China from 2014 to 2018," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
- Belfiore, Alessandra & Cuccurullo, Corrado & Aria, Massimo, 2022. "IoT in healthcare: A scientometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Jun Zhang & Shenghao Zhao & Chaonan Peng & Xianming Gong, 2022. "Spatial Heterogeneity of the Recovery of Road Traffic Volume from the Impact of COVID-19: Evidence from China," Sustainability, MDPI, vol. 14(21), pages 1-20, November.
- Yufei Fang & Zhiguang Shan, 2022. "How to Promote a Smart City Effectively? An Evaluation Model and Efficiency Analysis of Smart Cities in China," Sustainability, MDPI, vol. 14(11), pages 1-23, May.
- Paola Ortiz-Grisales & Julián Patiño-Murillo & Eduardo Duque-Grisales, 2021. "Comparative Study of Computational Models for Reducing Air Pollution through the Generation of Negative Ions," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
- Irene Nandutu & Marcellin Atemkeng & Nokubonga Mgqatsa & Sakayo Toadoum Sari & Patrice Okouma & Rockefeller Rockefeller & Theophilus Ansah-Narh & Jean Louis Ebongue Kedieng Fendji & Franklin Tchakount, 2022. "Error Correction Based Deep Neural Networks for Modeling and Predicting South African Wildlife–Vehicle Collision Data," Mathematics, MDPI, vol. 10(21), pages 1-31, October.
- Jie Zhao & Linjiang Yuan & Kun Sun & Han Huang & Panbo Guan & Ce Jia, 2022. "Forecasting Fine Particulate Matter Concentrations by In-Depth Learning Model According to Random Forest and Bilateral Long- and Short-Term Memory Neural Networks," Sustainability, MDPI, vol. 14(15), pages 1-18, August.
More about this item
Keywords
deep learning (DL); Internet of Medical Things (IoMT); DL applications; smart healthcare;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:3:p:107-:d:1603160. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.