IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i2p60-d1582830.html
   My bibliography  Save this article

On the Application of a Sparse Data Observers (SDOs) Outlier Detection Algorithm to Mitigate Poisoning Attacks in UltraWideBand (UWB) Line-of-Sight (LOS)/Non-Line-of-Sight (NLOS) Classification

Author

Listed:
  • Gianmarco Baldini

    (European Commission, Joint Research Centre, 21027 Ispra, Italy)

Abstract

The classification of the wireless propagation channel between Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) is useful in the operation of wireless communication systems. The research community has increasingly investigated the application of machine learning (ML) to LOS/NLOS classification and this paper is part of this trend, but not all the different aspects of ML have been analyzed. In the general ML domain, poisoning and adversarial attacks and the related mitigation techniques are an active area of research. Such attacks aim to hamper the ML classification process by poisoning the data set. Mitigation techniques are designed to counter this threat using different approaches. Poisoning attacks in LOS/NLOS classification have not received significant attention by the wireless communication community and this paper aims to address this gap by proposing the application of a specific mitigation technique based on outlier detection algorithms. The rationale is that poisoned samples can be identified as outliers from legitimate samples. In particular, the study described in this paper proposes a recent outlier detection algorithm, which has low computing complexity: the sparse data observers (SDOs) algorithm. The study proposes a comprehensive analysis of both conventional and novel types of attacks and related mitigation techniques based on outlier detection algorithms for UltraWideBand (UWB) channel classification. The proposed techniques are applied to two data sets: the public eWINE data set with seven different UWB LOS/NLOS different environments and a radar data set with the LOS/NLOS condition. The results show that the SDO algorithm outperforms other outlier detection algorithms for attack detection like the isolation forest (iForest) algorithm and the one-class support vector machine (OCSVM) in most of the scenarios and attacks, and it is quite competitive in the task of increasing the UWB LOS/NLOS classification accuracy through sanitation in comparison to the poisoned model.

Suggested Citation

  • Gianmarco Baldini, 2025. "On the Application of a Sparse Data Observers (SDOs) Outlier Detection Algorithm to Mitigate Poisoning Attacks in UltraWideBand (UWB) Line-of-Sight (LOS)/Non-Line-of-Sight (NLOS) Classification," Future Internet, MDPI, vol. 17(2), pages 1-23, February.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:2:p:60-:d:1582830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/2/60/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/2/60/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:2:p:60-:d:1582830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.