Author
Listed:
- Rui Zhao
(Faculty of Engineering and IT, University of Technology Sydney, Ultimo 2007, Australia
These authors contributed equally to this work.)
- Jutao Hao
(School of Electric Information Engineering, Shanghai Dianji University, Shuihua Rd., Shanghai 201306, China
These authors contributed equally to this work.)
- Huan Huo
(Faculty of Engineering and IT, University of Technology Sydney, Ultimo 2007, Australia)
Abstract
In the realm of intelligent transportation, pedestrian detection has witnessed significant advancements. However, it continues to grapple with challenging issues, notably the detection of pedestrians in complex lighting scenarios. Conventional visible light mode imaging is profoundly affected by varying lighting conditions. Under optimal daytime lighting, visibility is enhanced, leading to superior pedestrian detection outcomes. Conversely, under low-light conditions, visible light mode imaging falters due to the inadequate provision of pedestrian target information, resulting in a marked decline in detection efficacy. In this context, infrared light mode imaging emerges as a valuable supplement, bolstering pedestrian information provision. This paper delves into pedestrian detection and tracking algorithms within a multi-modal image framework grounded in deep learning methodologies. Leveraging the YOLOv4 algorithm as a foundation, augmented by a channel stack fusion module, a novel multi-modal pedestrian detection algorithm tailored for intelligent transportation is proposed. This algorithm capitalizes on the fusion of visible and infrared light mode image features to enhance pedestrian detection performance amidst complex road environments. Experimental findings demonstrate that compared to the Visible-YOLOv4 algorithm, renowned for its high performance, the proposed Double-YOLOv4-CSE algorithm exhibits a notable improvement, boasting a 5.0% accuracy rate enhancement and a 6.9% reduction in logarithmic average missing rate. This research’s goal is to ensure that the algorithm can run smoothly even on a low configuration 1080 Ti GPU and to improve the algorithm’s coverage at the application layer, making it affordable and practical for both urban and rural areas. This addresses the broader research problem within the scope of smart cities and remote ends with limited computational power.
Suggested Citation
Rui Zhao & Jutao Hao & Huan Huo, 2024.
"Research on Multi-Modal Pedestrian Detection and Tracking Algorithm Based on Deep Learning,"
Future Internet, MDPI, vol. 16(6), pages 1-14, May.
Handle:
RePEc:gam:jftint:v:16:y:2024:i:6:p:194-:d:1406139
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:6:p:194-:d:1406139. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.