IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i9p297-d1230971.html
   My bibliography  Save this article

Explainable Lightweight Block Attention Module Framework for Network-Based IoT Attack Detection

Author

Listed:
  • Furkat Safarov

    (Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea)

  • Mainak Basak

    (Department of AI Software, Gachon University, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea)

  • Rashid Nasimov

    (Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan)

  • Akmalbek Abdusalomov

    (Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
    Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan)

  • Young Im Cho

    (Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea)

Abstract

In the rapidly evolving landscape of internet usage, ensuring robust cybersecurity measures has become a paramount concern across diverse fields. Among the numerous cyber threats, denial of service (DoS) and distributed denial of service (DDoS) attacks pose significant risks, as they can render websites and servers inaccessible to their intended users. Conventional intrusion detection methods encounter substantial challenges in effectively identifying and mitigating these attacks due to their widespread nature, intricate patterns, and computational complexities. However, by harnessing the power of deep learning-based techniques, our proposed dense channel-spatial attention model exhibits exceptional accuracy in detecting and classifying DoS and DDoS attacks. The successful implementation of our proposed framework addresses the challenges posed by imbalanced data and exhibits its potential for real-world applications. By leveraging the dense channel-spatial attention mechanism, our model can precisely identify and classify DoS and DDoS attacks, bolstering the cybersecurity defenses of websites and servers. The high accuracy rates achieved across different datasets reinforce the robustness of our approach, underscoring its efficacy in enhancing intrusion detection capabilities. As a result, our framework holds promise in bolstering cybersecurity measures in real-world scenarios, contributing to the ongoing efforts to safeguard against cyber threats in an increasingly interconnected digital landscape. Comparative analysis with current intrusion detection methods reveals the superior performance of our model. We achieved accuracy rates of 99.38%, 99.26%, and 99.43% for Bot-IoT, CICIDS2017, and UNSW_NB15 datasets, respectively. These remarkable results demonstrate the capability of our approach to accurately detect and classify various types of DoS and DDoS assaults. By leveraging the inherent strengths of deep learning, such as pattern recognition and feature extraction, our model effectively overcomes the limitations of traditional methods, enhancing the accuracy and efficiency of intrusion detection systems.

Suggested Citation

  • Furkat Safarov & Mainak Basak & Rashid Nasimov & Akmalbek Abdusalomov & Young Im Cho, 2023. "Explainable Lightweight Block Attention Module Framework for Network-Based IoT Attack Detection," Future Internet, MDPI, vol. 15(9), pages 1-19, September.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:9:p:297-:d:1230971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/9/297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/9/297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuldoshbay Avazov & An Eui Hyun & Alabdulwahab Abrar Sami S & Azizbek Khaitov & Akmalbek Bobomirzaevich Abdusalomov & Young Im Cho, 2023. "Forest Fire Detection and Notification Method Based on AI and IoT Approaches," Future Internet, MDPI, vol. 15(2), pages 1-13, January.
    2. Saddam Aziz & Muhammad Talib Faiz & Adegoke Muideen Adeniyi & Ka-Hong Loo & Kazi Nazmul Hasan & Linli Xu & Muhammad Irshad, 2022. "Anomaly Detection in the Internet of Vehicular Networks Using Explainable Neural Networks (xNN)," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    3. Diogo Teixeira & Silvestre Malta & Pedro Pinto, 2022. "A Vote-Based Architecture to Generate Classified Datasets and Improve Performance of Intrusion Detection Systems Based on Supervised Learning," Future Internet, MDPI, vol. 14(3), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro Battistoni & Andrea Antonio Cantone & Gerardo Martino & Valerio Passamano & Marco Romano & Monica Sebillo & Giuliana Vitiello, 2023. "A Cyber-Physical System for Wildfire Detection and Firefighting," Future Internet, MDPI, vol. 15(7), pages 1-28, July.
    2. Snezhana Gocheva-Ilieva & Atanas Ivanov & Hristina Kulina, 2023. "Special Issue “Statistical Data Modeling and Machine Learning with Applications II”," Mathematics, MDPI, vol. 11(12), pages 1-4, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:9:p:297-:d:1230971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.