IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i12p362-d989597.html
   My bibliography  Save this article

A Game-Theoretic Approach for Network Security Using Honeypots

Author

Listed:
  • Răzvan Florea

    (Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania)

  • Mitică Craus

    (Department of Computer Science and Engineering, Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania)

Abstract

Cybersecurity plays an increasing role in today’s digital space, and its methods must keep pace with the changes. Both public and private sector researchers have put efforts into strengthening the security of networks by proposing new approaches. This paper presents a method to solve a game theory model by defining the contents of the game payoff matrix and incorporating honeypots in the defense strategy. Using a probabilistic approach we propose the course-of-action Stackelberg game (CoASG), where every path of the graph leads to an undesirable state based on security issues found in every host. The reality of the system is represented by a cost function which helps us to define a payoff matrix and find the best possible combination of the strategies once the game is run. The results show the benefits of using this model in the early prevention stages for detecting cyberattack patterns.

Suggested Citation

  • Răzvan Florea & Mitică Craus, 2022. "A Game-Theoretic Approach for Network Security Using Honeypots," Future Internet, MDPI, vol. 14(12), pages 1-15, November.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:12:p:362-:d:989597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/12/362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/12/362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khouzani, MHR. & Liu, Zhengliang & Malacaria, Pasquale, 2019. "Scalable min-max multi-objective cyber-security optimisation over probabilistic attack graphs," European Journal of Operational Research, Elsevier, vol. 278(3), pages 894-903.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    2. Zhang, Xiaoyu & Xu, Maochao & Su, Jianxi & Zhao, Peng, 2023. "Structural models for fog computing based internet of things architectures with insurance and risk management applications," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1273-1291.
    3. Da, Gaofeng & Xu, Maochao & Zhao, Peng, 2021. "Multivariate dependence among cyber risks based on L-hop propagation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 525-546.
    4. Wang, Zhen & Li, Chaofan & Jin, Xing & Ding, Hong & Cui, Guanghai & Yu, Lanping, 2021. "Evolutionary dynamics of the interdependent security games on complex network," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    5. Bhuiyan, Tanveer Hossain & Medal, Hugh R. & Nandi, Apurba K. & Halappanavar, Mahantesh, 2021. "Risk-averse bi-level stochastic network interdiction model for cyber-security risk management," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:12:p:362-:d:989597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.