IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v13y2021i7p166-d583400.html
   My bibliography  Save this article

An Image Hashing-Based Authentication and Secure Group Communication Scheme for IoT-Enabled MANETs

Author

Listed:
  • Aiiad Albeshri

    (Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 80221, Saudi Arabia)

Abstract

Mobile ad hoc networks (MANETs) play a highly significant role in the Internet of Things (IoT) for managing node mobility. MANET opens the pathway for different IoT-based communication systems with effective abilities for a variety of applications in several domains. In IoT-based systems, it provides the self-formation and self-connection of networks. A key advantage of MANETs is that any device or node can freely join or leave the network; however, this makes the networks and applications vulnerable to security attacks. Thus, authentication plays an essential role in protecting the network or system from several security attacks. Consequently, secure communication is an important prerequisite for nodes in MANETs. The main problem is that the node moving from one group to another may be attacked on the way by misleading the device to join the neighboring group. To address this, in this paper, we present an authentication mechanism based on image hashing where the network administrator allows the crosschecking of the identity image of a soldier (i.e., a node) in the joining group. We propose the node joining and node migration algorithms where authentication is involved to ensure secure identification. The simulation tool NS-2 is employed to conduct extensive simulations for extracting the results from the trace files. The results demonstrate the effectiveness of the proposed scheme based on the memory storage communication overhead and computational cost. In our scheme, the attack can be detected effectively and also provides a highly robust assurance.

Suggested Citation

  • Aiiad Albeshri, 2021. "An Image Hashing-Based Authentication and Secure Group Communication Scheme for IoT-Enabled MANETs," Future Internet, MDPI, vol. 13(7), pages 1-14, June.
  • Handle: RePEc:gam:jftint:v:13:y:2021:i:7:p:166-:d:583400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/13/7/166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/13/7/166/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raman Singh & Sean Sturley & Hitesh Tewari, 2023. "Blockchain-Enabled Chebyshev Polynomial-Based Group Authentication for Secure Communication in an Internet of Things Network," Future Internet, MDPI, vol. 15(3), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:7:p:166-:d:583400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.