Author
Listed:
- Riccardo Cantini
(DIMES Department, University of Calabria, 87036 Rende, Italy)
- Fabrizio Marozzo
(DIMES Department, University of Calabria, 87036 Rende, Italy)
- Alessio Orsino
(DIMES Department, University of Calabria, 87036 Rende, Italy)
- Domenico Talia
(DIMES Department, University of Calabria, 87036 Rende, Italy)
- Paolo Trunfio
(DIMES Department, University of Calabria, 87036 Rende, Italy)
Abstract
Workflows are largely used to orchestrate complex sets of operations required to handle and process huge amounts of data. Parallel processing is often vital to reduce execution time when complex data-intensive workflows must be run efficiently, and at the same time, in-memory processing can bring important benefits to accelerate execution. However, optimization techniques are necessary to fully exploit in-memory processing, avoiding performance drops due to memory saturation events. This paper proposed a novel solution, called the Intelligent In-memory Workflow Manager (IIWM), for optimizing the in-memory execution of data-intensive workflows on parallel machines. IIWM is based on two complementary strategies: (1) a machine learning strategy for predicting the memory occupancy and execution time of workflow tasks; (2) a scheduling strategy that allocates tasks to a computing node, taking into account the (predicted) memory occupancy and execution time of each task and the memory available on that node. The effectiveness of the machine learning-based predictor and the scheduling strategy were demonstrated experimentally using as a testbed, Spark, a high-performance Big Data processing framework that exploits in-memory computing to speed up the execution of large-scale applications. In particular, two synthetic workflows were prepared for testing the robustness of the IIWM in scenarios characterized by a high level of parallelism and a limited amount of memory reserved for execution. Furthermore, a real data analysis workflow was used as a case study, for better assessing the benefits of the proposed approach. Thanks to high accuracy in predicting resources used at runtime, the IIWM was able to avoid disk writes caused by memory saturation, outperforming a traditional strategy in which only dependencies among tasks are taken into account. Specifically, the IIWM achieved up to a 31 % and a 40 % reduction of makespan and a performance improvement up to 1.45 × and 1.66 × on the synthetic workflows and the real case study, respectively.
Suggested Citation
Riccardo Cantini & Fabrizio Marozzo & Alessio Orsino & Domenico Talia & Paolo Trunfio, 2021.
"Exploiting Machine Learning for Improving In-Memory Execution of Data-Intensive Workflows on Parallel Machines,"
Future Internet, MDPI, vol. 13(5), pages 1-23, May.
Handle:
RePEc:gam:jftint:v:13:y:2021:i:5:p:121-:d:549066
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:5:p:121-:d:549066. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.