IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v13y2021i5p114-d546014.html
   My bibliography  Save this article

Collecting a Large Scale Dataset for Classifying Fake News Tweets Using Weak Supervision

Author

Listed:
  • Stefan Helmstetter

    (Data and Web Science Group, School of Business Informatics and Mathematics, University of Mannheim, B6 26, 68159 Mannheim, Germany)

  • Heiko Paulheim

    (Data and Web Science Group, School of Business Informatics and Mathematics, University of Mannheim, B6 26, 68159 Mannheim, Germany)

Abstract

The problem of automatic detection of fake news in social media, e.g., on Twitter, has recently drawn some attention. Although, from a technical perspective, it can be regarded as a straight-forward, binary classification problem, the major challenge is the collection of large enough training corpora, since manual annotation of tweets as fake or non-fake news is an expensive and tedious endeavor, and recent approaches utilizing distributional semantics require large training corpora. In this paper, we introduce an alternative approach for creating a large-scale dataset for tweet classification with minimal user intervention. The approach relies on weak supervision and automatically collects a large-scale, but very noisy, training dataset comprising hundreds of thousands of tweets. As a weak supervision signal, we label tweets by their source, i.e., trustworthy or untrustworthy source , and train a classifier on this dataset. We then use that classifier for a different classification target, i.e., the classification of fake and non-fake tweets . Although the labels are not accurate according to the new classification target (not all tweets by an untrustworthy source need to be fake news, and vice versa), we show that despite this unclean, inaccurate dataset, the results are comparable to those achieved using a manually labeled set of tweets. Moreover, we show that the combination of the large-scale noisy dataset with a human labeled one yields more advantageous results than either of the two alone.

Suggested Citation

  • Stefan Helmstetter & Heiko Paulheim, 2021. "Collecting a Large Scale Dataset for Classifying Fake News Tweets Using Weak Supervision," Future Internet, MDPI, vol. 13(5), pages 1-25, April.
  • Handle: RePEc:gam:jftint:v:13:y:2021:i:5:p:114-:d:546014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/13/5/114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/13/5/114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hunt Allcott & Matthew Gentzkow, 2017. "Social Media and Fake News in the 2016 Election," NBER Working Papers 23089, National Bureau of Economic Research, Inc.
    2. Arkaitz Zubiaga & Damiano Spina & Raquel Martínez & Víctor Fresno, 2015. "Real-time classification of Twitter trends," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(3), pages 462-473, March.
    3. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    4. Hunt Allcott & Matthew Gentzkow, 2017. "Social Media and Fake News in the 2016 Election," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 211-236, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Cage & Nicolas Hervé & Marie-Luce Viaud, 2017. "The Production of Information in an Online World: Is Copy Right?," Working Papers hal-03393171, HAL.
    2. Leopoldo Fergusson & Carlos Molina, 2020. "Facebook Causes Protests," HiCN Working Papers 323, Households in Conflict Network.
    3. Tetsuro Kobayashi & Fumiaki Taka & Takahisa Suzuki, 2021. "Can “Googling” correct misbelief? Cognitive and affective consequences of online search," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-16, September.
    4. Dean Neu & Gregory D. Saxton & Abu S. Rahaman, 2022. "Social Accountability, Ethics, and the Occupy Wall Street Protests," Journal of Business Ethics, Springer, vol. 180(1), pages 17-31, September.
    5. Robbett, Andrea & Matthews, Peter Hans, 2018. "Partisan bias and expressive voting," Journal of Public Economics, Elsevier, vol. 157(C), pages 107-120.
    6. Henrik Skaug Sætra, 2021. "AI in Context and the Sustainable Development Goals: Factoring in the Unsustainability of the Sociotechnical System," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    7. Fathey Mohammed & Nabil Hasan Al-Kumaim & Ahmed Ibrahim Alzahrani & Yousef Fazea, 2023. "The Impact of Social Media Shared Health Content on Protective Behavior against COVID-19," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    8. Michele Cantarella & Nicolo' Fraccaroli & Roberto Volpe, 2019. "Does fake news affect voting behaviour?," Department of Economics 0146, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    9. Joël Cariolle & Yasmine Elkhateeb & Mathilde Maurel, 2022. "(Mis-)information technology: Internet use and perception of democracy in Africa," Documents de travail du Centre d'Economie de la Sorbonne 22010, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    10. Kerim Peren Arin & Juan A. Lacomba & Francisco Lagos & Deni Mazrekaj & Marcel Thum, 2021. "Misperceptions and Fake News during the Covid-19 Pandemic," CESifo Working Paper Series 9066, CESifo.
    11. Bartosz Wilczek, 2020. "Misinformation and herd behavior in media markets: A cross-national investigation of how tabloids’ attention to misinformation drives broadsheets’ attention to misinformation in political and business," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    12. Barrera, Oscar & Guriev, Sergei & Henry, Emeric & Zhuravskaya, Ekaterina, 2020. "Facts, alternative facts, and fact checking in times of post-truth politics," Journal of Public Economics, Elsevier, vol. 182(C).
    13. Sumeet Kumar & Binxuan Huang & Ramon Alfonso Villa Cox & Kathleen M. Carley, 2021. "An anatomical comparison of fake-news and trusted-news sharing pattern on Twitter," Computational and Mathematical Organization Theory, Springer, vol. 27(2), pages 109-133, June.
    14. Julia Cagé & Nicolas Hervé & Marie-Luce Viaud, 2020. "The Production of Information in an Online World," Review of Economic Studies, Oxford University Press, vol. 87(5), pages 2126-2164.
    15. Zazli Lily Wisker & Robert Neil McKie, 2021. "The effect of fake news on anger and negative word-of-mouth: moderating roles of religiosity and conservatism," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(2), pages 144-153, June.
    16. Roger D. Magarey & Christina M. Trexler, 2020. "Information: a missing component in understanding and mitigating social epidemics," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-11, December.
    17. McNamara, Trent & Mosquera, Roberto, 2024. "The political divide: The case of expectations and preferences," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 110(C).
    18. Denter, Philipp & Ginzburg, Boris, 2021. "Troll Farms and Voter Disinformation," MPRA Paper 109634, University Library of Munich, Germany.
    19. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    20. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:5:p:114-:d:546014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.