IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v11y2019i4p91-d219857.html
   My bibliography  Save this article

Dynamic Gesture Recognition Based on MEMP Network

Author

Listed:
  • Xinyu Zhang

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

  • Xiaoqiang Li

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

Abstract

In recent years, gesture recognition has been used in many fields, such as games, robotics and sign language recognition. Human computer interaction (HCI) has been significantly improved by the development of gesture recognition, and now gesture recognition in video is an important research direction. Because each kind of neural network structure has its limitation, we proposed a neural network with alternate fusion of 3D CNN and ConvLSTM, which we called the Multiple extraction and Multiple prediction (MEMP) network. The main feature of the MEMP network is to extract and predict the temporal and spatial feature information of gesture video multiple times, which enables us to obtain a high accuracy rate. In the experimental part, three data sets (LSA64, SKIG and Chalearn 2016) are used to verify the performance of network. Our approach achieved high accuracy on those data sets. In the LSA64, the network achieved an identification rate of 99.063%. In SKIG, this network obtained the recognition rates of 97.01% and 99.02% in the RGB part and the rgb-depth part. In Chalearn 2016, the network achieved 74.57% and 78.85% recognition rates in RGB part and rgb-depth part respectively.

Suggested Citation

  • Xinyu Zhang & Xiaoqiang Li, 2019. "Dynamic Gesture Recognition Based on MEMP Network," Future Internet, MDPI, vol. 11(4), pages 1-11, April.
  • Handle: RePEc:gam:jftint:v:11:y:2019:i:4:p:91-:d:219857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/11/4/91/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/11/4/91/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvatore Graziani & Maria Gabriella Xibilia, 2020. "Innovative Topologies and Algorithms for Neural Networks," Future Internet, MDPI, vol. 12(7), pages 1-4, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:11:y:2019:i:4:p:91-:d:219857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.