IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v10y2018i1p4-d125216.html
   My bibliography  Save this article

A Virtual Learning Architecture Enhanced by Fog Computing and Big Data Streams

Author

Listed:
  • Riccardo Pecori

    (SMARTEST Research Centre, eCampus University, Via Isimbardi 10, 22060 Novedrate, CO, Italy
    Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, PR, Italy)

Abstract

In recent years, virtual learning environments are gaining more and more momentum, considering both the technologies deployed in their support and the sheer number of terminals directly or indirectly interacting with them. This essentially means that every day, more and more smart devices play an active role in this exemplary Web of Things scenario. This digital revolution, affecting education, appears clearly intertwined with the earliest forecasts of the Internet of Things, envisioning around 50 billions heterogeneous devices and gadgets to be active by 2020, considering also the deployment of the fog computing paradigm, which moves part of the computational power to the edge of the network. Moreover, these interconnected objects are expected to produce more and more significant streams of data, themselves generated at unprecedented rates, sometimes to be analyzed almost in real time. Concerning educational environments, this translates to a new type of big data stream, which can be labeled as educational big data streams. Here, pieces of information coming from different sources (such as communications between students and instructors, as well as students’ tests, etc.) require accurate analysis and mining techniques in order to retrieve fruitful and well-timed insights from them. This article presents an overview of the current state of the art of virtual learning environments and their limitations; then, it explains the main ideas behind the paradigms of big data streams and of fog computing, in order to introduce an e-learning architecture integrating both of them. Such an action aims to enhance the ability of virtual learning environments to be closer to the needs of all the actors in an educational scenario, as demonstrated by a preliminary implementation of the envisioned architecture. We believe that the proposed big stream and fog-based educational framework may pave the way towards a better understanding of students’ educational behaviors and foster new research directions in the field.

Suggested Citation

  • Riccardo Pecori, 2018. "A Virtual Learning Architecture Enhanced by Fog Computing and Big Data Streams," Future Internet, MDPI, vol. 10(1), pages 1-30, January.
  • Handle: RePEc:gam:jftint:v:10:y:2018:i:1:p:4-:d:125216
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/10/1/4/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/10/1/4/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laura Belli & Simone Cirani & Luca Davoli & Gianluigi Ferrari & Lorenzo Melegari & Marco Picone, 2016. "Applying Security to a Big Stream Cloud Architecture for the Internet of Things," International Journal of Distributed Systems and Technologies (IJDST), IGI Global, vol. 7(1), pages 37-58, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeinab Shahbazi & Yung-Cheol Byun, 2022. "Agent-Based Recommendation in E-Learning Environment Using Knowledge Discovery and Machine Learning Approaches," Mathematics, MDPI, vol. 10(7), pages 1-19, April.
    2. Khalid Mohiuddin & Huda Fatima & Mohiuddin Ali Khan & Mohammad Abdul Khaleel & Zeenat Begum & Sajid Ali Khan & Omer Bin Hussain, 2023. "Design of a Novel Edge-Centric Cloud Architecture for m-Learning Performance Effectiveness by Leveraging Distributed Computing Paradigms’ Potentials," SAGE Open, , vol. 13(3), pages 21582440231, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:10:y:2018:i:1:p:4-:d:125216. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.