Author
Listed:
- Unyamanee Kummaraka
(Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)
- Patchanok Srisuradetchai
(Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand)
Abstract
Deep neural networks (DNNs) are prominent in predictive analytics for accurately forecasting target variables. However, inherent uncertainties necessitate constructing prediction intervals for reliability. The existing literature often lacks practical methodologies for creating predictive intervals, especially for time series with trends and seasonal patterns. This paper explicitly details a practical approach integrating dual-output Monte Carlo Dropout (MCDO) with DNNs to approximate predictive means and variances within a Bayesian framework, enabling forecast interval construction. The dual-output architecture employs a custom loss function, combining mean squared error with Softplus-derived predictive variance, ensuring non-negative variance values. Hyperparameter optimization is performed through a grid search exploring activation functions, dropout rates, epochs, and batch sizes. Empirical distributions of predictive means and variances from the MCDO demonstrate the results of the dual-output MCDO DNNs. The proposed method achieves a significant improvement in forecast accuracy, with an RMSE reduction of about 10% compared to the seasonal autoregressive integrated moving average model. Additionally, the method provides more reliable forecast intervals, as evidenced by a higher coverage proportion and narrower interval widths. A case study on Thailand’s durian export data showcases the method’s utility and applicability to other datasets with trends and/or seasonal components.
Suggested Citation
Unyamanee Kummaraka & Patchanok Srisuradetchai, 2024.
"Time-Series Interval Forecasting with Dual-Output Monte Carlo Dropout: A Case Study on Durian Exports,"
Forecasting, MDPI, vol. 6(3), pages 1-21, August.
Handle:
RePEc:gam:jforec:v:6:y:2024:i:3:p:33-636:d:1448435
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:3:p:33-636:d:1448435. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.